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Chapter 1

Structure Theory |

1.1 Invertible Elements and Spectra

Definition. A C* algebra is an involutive Banach algeb#avith a norm satisfying the relations

[AB]| < [|AI I BII,
1AM = 1Al
1A*Al = A

We denote the dual algebra by. Then we can and often will use the weak topology .fband

the weak-* topology ford’. These properties are motivated by the study of bounded operators on
Hilbert spaces. For example, to show that A|| = ||A||* holds inB(*), for some Hilbert space,

we have the following calculation.

A < o)l 1A= All
= | AI* < [AA]l.
The first two properties are easy and they give
1A Al < JA*| Al = [|A))*
= |l A|I* = |47 4].

Remark.Some algebras come without a unit element. Such algebras are sometimes more easy to
deal with if a unit element is appended in a formal way. A typical example of this is the appending
of the Dirac delta function to a convolution algebra of smooth functions, there being no smooth
representative which can play the role of the unit element in a convolution algebra.

Definition. Let.A be a Banach algebra. Define the unitizationdofo be
At =(H N e AxC
with
(a,\) - (b, ) = (ab+ Ab+ pa, A\p).
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CHAPTER 1. STRUCTURE THEORY 1 5
Definition. The resolvent ofd € A, Res (A) C C, isthe sef{\ € C : (A — A) texistsinA}.
Definition. The spectrum ofA € A, Spec (A), is the complement dRes (A).
1.1. Theorem (Spectral Radius).

1. Res (A) is open.

2. Spec (A) is compact.

3. SUPsespec(y A = 1o A/ = inf,, A"

Proof. The first two follow easily from the definitions. To prove the third, write = ||A™||, then
Ay < apap. Letm € Z, m > 0. We can writen = p(n)m + ¢(n), wherep(n) andg(n) < m are
unique integers. Then

al/"< 1/n 1/n < p(n)/nal/n

no = QpmmPen) = Ym T Yg(n)
Now
lim sup o/™ < lim o™/ (sup{ag, o, . . . ,ozm})l/n < lim o?M/m < o™ for any m.
n—00 n—00 n—00
Therefore

lim sup o/ < inf o/™ < lim inf a!/",
n

n
n—oo n—0oo

so that the limit of the theorem exists and equals, | A"||*/". To show thatsupcgpec(a) 1Al =

lim, || A"||'/", let ¢ be such that¢| > lim, ||A"[|"", then|¢| > inf, ||A"|"" so that the series
S (A/¢)™ converges in norm t¢l — A/¢)”' so¢ ¢ Spec (A). Furthermore, suppose that for all

in the interval<supA€SpCC(A) IAl,sup, HA”H””), (1 — A/r)"" existed. Ther{l — A/r)"" would be

analytic forr > sup,cqpec(4) [A| @nd(1 — Ayt = oA/ But||A”/r”||l/n > ;nfnﬂt—ﬂ?:/n >1
=<

1.2. Theorem (Holomorphic Symbolic Calculus).Let A be aC* algebra, andA € A. Let f be
holomorphic onO> Spec (A). Then we can defing(A) € A such that

1. f — f(A)is a homomorphism of the algebra of holomorphic function®ao A.
2. For the functionf(\) = A, f(A) = A.

3. Forf(A) = (A=) !, f(4) = (A— X)L

4. Spec (f(A)) = f(Spec (A)). [spectral mapping theorem]

Proof. First we prove that- [.(a« —\)"(A—A)~'d\ = («— A)", wherel is a contour surrounding
Spec (A). Lety, equal this integral expression. Then itis easy to show(that A)y,, = y,.1. Thus
the formula will follow from the case = 0.

By the Cauchy theorem for vector-valued integrals we can replace the canbyua circle of radius
r > ||A]l. Then integraté\ — A)~! = >~ A~""1 A" term by term. This proves the result for= 0.
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Now we can assert the statements of the theorem for rational functisme the integrands will
then always be of the given form by factorization.

Finally, the approximation of holomorphic functions by rational functions converges uniformly on
compact sets. Therefore we can deffifel) for holomorphicf by interchanging the limit and the
integral. O

Remark.In order to state a more refined version of the symbolic calculus, valid for arbitrary contin-
uous functions o¥pec (A), we need to delve into the theory of commutativealgebras.

Definition. A subspacé& of a commutative algebrd is called an ideal if, foranyl € A, AB € T
wheneverB € 7.

Definition. A complex homomorphismy, of a Banach algebra is a linear functional with the prop-
erty p(AB) = ¢(A)p(B). Itis also called a character of the algebra.

1.3. Theorem (Gleason, Kahane, Zelazko)lf ¢ is a linear functional on a Banach algebra such
thato(1) = 1, andg(A) # 0 for any invertibleA, theng is a complex homomorphism.

Proof. See [Rud91]. O

1.4. Theorem (Gelfand-Mazur). Let A be a Banach algebra in which every nonzero element is
invertible. ThenA is isometrically isomorphic t&.

Proof. Let A € A and)\; # )\;; then at least one of; — A, Ay, — A is invertible by hypothesis.
Spec (A) is nonempty by a standard result (a spectrum is never empty), so it follows that for each
suchA there is a unique\(A) € Cin Spec (A). The mappingd — A(A) is an isomorphism since

A= AA) -1, itis obviously an isometry. O

1.5. Theorem. Let. 4 be a commutative Banach algebra, andAebe the set of all complex homo-
morphisms of4. Then

1. Every maximal ideal ol is the kernel of some € A.

2. Ifh € A, ker (h) is a maximal ideal ofA.

3. A € Ainvertible if and only ifo(A) # 0 for all h € A.

4. A € Ainvertible if and only ifA lies in no proper ideal of4.
5. X € Spec (A) if and only ifh(A) = A for someh € A.

1. LetM be a maximal ideal ofl. Since the set of all invertible elements is open, maximal ideals
are closed; sd/ is closed. Thereforgl/M is a Banach algebra. Chooses A, x ¢ M, and
setJ = {ax+y :a€ Aye€ M}. ThenJ is anideal, and € J soJ is larger than\/, so
J = A. Therefore, for somel € A andy € M we haveAz + y = 1. Applying the quotient
mapr : A — A/M we see thatr(A)r(z) = 7(1), thus every nonzero element df/M is
invertible. So by the Gelfand-Mazur theoretnM = C, j : A/M — C. Leth = jom, then
h € Aandh(M) = 0.
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2. If h € Athenh~1(0) is an ideal inA with codimension 1. Therefore it is maximal.

3. If Aisinvertible inA4 andh € A, thenh(A)h(A™') = h(1) = 1 and soh(A) # 0. If A is not
invertible then{aA : a € A} N {1} = &, so{aA : a € A} is a proper ideal which lies in a
maximal ideal and so it is annihilated by some A by the first result.

4. No invertible element lies in any proper ideal. The converse is proved in the previous item.

5. Apply the third item to\ — A instead ofA.

Remark.As an application of the above we have the following result on Fourier series.

1.6. Theorem (Wiener Lemma). Suppose : R" — C,

flz) = Z A €XP M - T, Z|am| < 00,

mezZ"

If f(x) is never zero then

1/f(x) = Z by, expim - x, Z|bm\ < 00.

mezn

Proof. Let .4 be the commutative Banach algebra of functions of the fdfm,, exp im - z with the
norm||f|| = >_ |an|. For eache € R", the evaluation map — f(x) is a complex homomorphism.
By assumption no evaluation gives zero. So if we can prove that all complex homomorphigims of
are evaluations for some € R", then the third part of the structure theorem above will assert the
existence ofl/f in A.

Let » be any complex homomorphism gf. Write g,(x) = expiz,, r = 1,...,n; x, is ther-th
coordinate of: € R™. Theng, € A, 1/g, € A, and||g.|| = ||1/g.]| = 1.

It is easy to see that {fA|| < 1 then|¢(A)| < 1 for any complex homomorphisi, since for any

A € Cwith [A\] > 1 we know(1 — A/)\)~! exists and s@(1 — A/)\) # 0 and sop(A) # \. So we
see thath(g,)| < 1 and|h(1/g,)| = |1/h(g.)| < 1. Thereforeh(g,) = expiy, for somey, € R,
r=1,...,n.

Let P be any trigonometric polynomial. ThenP) = P(yi,...,y,). Buth is continuous and the
trigonometric polynomials are dense.h soh(f) = f(y) for all f € A and soh is evaluation at
Y. L]

1.2 Gelfand Transform

Definition. Given A € A we can define a functiod : A — C by

Ais called the Gelfand transform of. It is also sometimes called the spectrumAfthough we
will never use this terminology.
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Definition. The Gelfand topology on is the weakest topology such thatis continuous for every
Ae A

Definition. The radical of4, rad (.A), is the intersection of all the maximal ideals.4f

1.7. Theorem. Let A be equipped with the Gelfand topology. Then

1. A is a compact Hausdorff space.

2. The Gelfand transform is a homomorphisndodnto a subalgebra of the continuous functions
on A, and the kernel of this homomorphismrigl (4). Thus the Gelfand transform is an
isomorphism if and only ifad (A) = {0}.

3. Forall A € A, Ran(A) = Spec (A), and HﬁH = SUDPjespec(4) [A| < [|A[l. Furthermore,
A € rad (A) if and only ifsup,cgpec(a) [A| = 0.

Proof. For a complete proof see [Rud91]. The second and third items follow from the structure
theorem above, together with some computation. The first item follows from the Banach-Alaoglu
theorem and a proof of the closure &f The Gelfand topology is the restriction of the weak-*
topology toA. O

Definition. The setd C A is called the spectrum aofl. To avoid technical complications, the
spectrum of4 is actually defined as not to contain the zero homomorphism.

Remark.Here is an example that shows how the Gelfand transform is a generalization of the Fourier
transform, in thel.! context. Letd = L' (R™) dz, with unit attached. So members.dfare f + a4,
where/ is the Dirac measure. Of course, the multiplication is convolution.

Let » be a complex homomorphisrh,e A; thenh is one of the following forms,

~

he(f +ad) = f(t) + a
or

hoo(f + ) = «

We prove this as follows. If(f) = 0 for all f € Athenh = h,. Assumeh(f) # 0 for some
f € A. Thenh(f) = [ f3 for somes € L> (R") dz. Sinceh(f «g) = h(f)h(g), we can show that
3 coincides almost everywhere with a continuous functiamhich satisfies(xz + y) = b(x)b(y).
But every bounded solution of this functional equation is of the féfm) = exp(—ixt). Thus

~

h(f) = f(t) andh is of the formh,.

SoA = R" U {oc}, say with the topology of the one-point compactification. Siﬁ(t@ — 0 as
[t| — 00, A C C(A). A separates points ofd so the weak topology induced adk by A is as we
have chosen.

1.8. Theorem (Gelfand-Naimark). Let A be a commutative’* algebra, and equipA with the
Gelfand topology as usual. Then the Gelfand transform is an isometric *-isomorphidror@b the
algebra of continuou€’-valued functions o\, C'(A).
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Proof. In order to show that the involution is preserved we need only show that forA*, h(A) €
R. So letA = A* and writeh(A) = « + i3. Calculate

h(A+it) =a+i(f+1)
2+ (B+1)? = |hA+it)]? <|[A+it]> = ||(A+it)(A—it)|| <||A|* +
o?+ 2 +26t < AP VteR
— (5 =0.

By definition the elements ol C C/(A) separate points ok. Also, T = 1, so1 € A. Therefored
is dense inC'(A) by the Stone-Weierstrass theorem.

Now we show thaf is an isometry. Letr € A, y = zz*. Soy = y* and||y?| = |ly||* and
ly™ = |ly||™. Therefore by the spectral radius formiji@|__ = |ly||. Sincey = zz*, § = |Z]?, and
s0|z> = ||7ll. = llyll = [|l==*|| = ||=||*, proving the isometry. From this} is closed inC'(A) and
SOA = C(A). O

1.9. Theorem (Inverse Gelfand-Naimark). Let .A be a commutativé'™ algebra. Letx € A be
such that the polynomials inandx* are dense ind. Then we can define an isometric isomorphism
U : C(Spec(z)) — Aby

and we have

W= ()

Moreover iff(\) = A, then¥ f = x.

Proof. Let A be equipped with the Gelfand topology. Therms a continuous function ok with
Ran(z) = Spec (z). Suppose we havk; andh, from A such thath,(z) = hy(z). Then also
hi(z*) = ho(x*). By continuity, hi(y) = he(y) for all y in the algebra generated by polynomials
in z andz*, i.e. A. Thereforeh; = hy. Thereforer is one-to-one. Sincé\ is compactr is a
homeomorphism\ — Spec (x). Thereforef — f o T is an isometric isomorphism @f (Spec (x))
ontoC'(A). By the Gelfand-Naimark theorerfip7 is thus the Gelfand transform of a unique element
in A which we denotel f, and||[V f|| = || f|| . If f(A) = A, thenfoz =7 andVf = x. O

Remark. This last theorem provides a continuous symbolic calculus for operators as long as they
generate a commutative* algebra. So, for example, if is a normal operator then we apply the
above theorem to the algebra generated landz*, and we get the continuous functional calculus

for normal operators.

1.3 Local Algebras, Idempotents and Projections

Definition. A local Banach algebrais a dense subalgeboi a Banach algebrd whereA is closed
under holomorphic symbolic calculus .
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Remark. Note that we need the explicit reference to the complefigin order to definef (a) for
a € A because is required to be holomorphic on the spectrum of the elemagand the spectrum
depends on the whole algebra. Howeverdihas a unit, then direct referencefois not necessary,
as shown by the following.

1.10. Theorem. Let A be a local Banach algebra with unit. Lete A be invertible inA. Thenz is
invertible in A. Therefore the spectrum of any element is the sarméadn A.

Proof. Let z be invertible in.A. So the domain of holomorphy of(\) = A~! is contained in
the A-spectrum ofz, by definition. By definition,A is closed under action of in its domain of
holomorphy. |

Definition. Let A be a local Banach algebra. An idempotentdris an element with 22 = z. If
idempotents:, y satisfyxy = yx = 0, they are said to be orthogonal, writtenl y. If idempotents
x,y satisfyzry = yr = x, we writex < y.

Definition. Let. A be a localC* algebra. Then two idempotentsy are said to be orthogonal if, in
addition to the above, we havéy = yz* = 0.

Definition. Let. A be a localC* algebra. An idempotent is called a projection if it is self-adjoint.
1.11. Theorem. The idempotents of are dense in the idempotents.4f

Proof. Let z be an idempotent o, and lete > 0. Choosey in a neighbourhood af such that
ly — 9% = ||z —2* + 8§ — 226 — 6%|] < e. So the spectrum qf is contained completely in an
neighbourhood of 0 and 1. Construct the required idempotent by holomorphic calthlass not
so clear to me... O



Chapter 2

von Neumann Algebras

2.1 Commutant and Bicommutant

Remark.Now we will introduce von Neumann algebras. These are defined in a concrete sense,
explicitly as subalgebras & (#) for a Hilbert spacé{. Recall the zoo of topologies df(H).

1. The norm topology or uniform topology.

2. The strong topology is the locally convex topology associated to the family of seminorms
X = lIxvll,ve™.

3. The weak topology is the locally convex topology associated with the family of seminorms
X — | (v, xw) |, v,w € H.

Definition. A von Neumann algebra is a strongly cloggéttsubalgebra o5(H).

Definition. The commutantolM € B(H) is the setV[® = {z € B(H) : vy = yxVy € M }. Clear-
ly M€ is a weakly closed subalgebra.

2.1. Theorem (von Neumann).Let M be aC*-subalgebra of3(H), containing the identity. Then
T.FAE.

1. M= M,
2. M is weakly closed.
3. M is strongly closed.

Proof. The second clearly follows from the first. To show that the second and third are equivalent,
note the fact that each strongly closed convex s&(iK) is weakly closed.

To show that the last implies the first, lgbe a fixed element oM. Let p be the projection onto

the closed subspace pf{ = {z¢ : = € M} for some fixed. € H. Clearlypy = yp soyé € pH.
Therefore there exists € M such that|(y — x)¢{|| < e, for eache > 0.

11
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Takeéy, &, ..., & € Hand put = £, --®E, € HB---&H. Nowyd---dy € (M & --- d M),
Apply the construction above to find arsuch that|(y & --- Gy —x & --- @ x){|| < €. Then

ol — )&l < €.
k=1
Thereforey is approximated by in the strong topology, and so by hypothegis M. Therefore

M C M. The opposite inclusion is obvious. O

2.2. Theorem (Kaplansky Density).Let A be aC*-subalgebra of3() with strong closureM.
Then the unit ballA! of A is strongly dense in the unit bal1! of M. If 1 € A, then the unitary
group of A is strongly dense in the unitary group .

Proof. See [Kap51]. O

2.2 Factors

Definition. Let M be a von Neumann algebra. Then the centekbis Z (M) = M N M°.
Definition. If Z (M) = {al : a € C}, thenM is called a factor.

Remark. A factor is a kind of algebraic counterpart of an irreducible representation. The factors play
an important role in the classification of von Neumann algebras.

2.3 The Trace
Definition. Let A € B(H), A > 0. The trace of4 is

Tr(A) = Z (v;, Av;) € 10, 00].

If Tr (A) < oo thenA is called trace class.

Definition. Consider the family of seminorms||, : A — |Tr (AB;) |, for { B;} the set of trace class
operators. The topology associated to this family is calledstheeak topology or the ultra-weak
topology.

Remark.Choosing a basis we see that every functiodal~ Tr (AB) can be written asd —
> (v, Aw;), so the ultra-weak topology is stronger than the weak topology. However, these two
topologies coincide on the unit ball ().

Definition. A bounded functional) on a von Neumann algebt&! is called normal if for each
bounded monotone increasing Het;} in M, with limit A, the net{¢(A;)} converges tay(A).
The set of normal functionals on a von Neumann algebtas denoted byM,. M, is a Banach
space and\U,” = M. ThusM., is called the pre-dual of1.

2.3. Theorem. Let ¢ be a bounded functional on a von Neumann algebtaThen T.FA.E.
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1. ¢is normal.
2. ¢ is weakly continuous on the unit ball j#1.
3. ¢ is ultra-weakly continuous.
4. There is a trace class operatdrsuch thaty(B) = Tr (AB) for all B € M.
Proof. See [Ped79]. O

2.4. Theorem. Let ¢ be a positive normal functional on a von Neumann algebfa Then there
exists a positive trace class element B(H), such thatp)(B) = Tr (AB) for all B € M. Further-
more,||¢|| = Tr (A).

Proof. See [Ped79]. O

2.4 Hyperfinite Algebras

Definition. A von Neumann algebra is called hyperfinite if there exists an increasing sequence
of finite-dimensional subalgebras whose union is weakly-dendd.in



Chapter 3

States and Representations

3.1 GNS Construction

Definition. A linear functional on aC* algebraA satisfying¢(A*A) > 0 for all A € A is called a
positive functional.

3.1. Theorem. The following properties hold for positive functionals

1. If Ais self-adjoint thers(A) € R.
2. [¢(A*B)P? < $(A*A)¢(B*B).
3. ¢ is continuous w.r.t. the norm topology.
4. ¢(B*AB) < [|Al ¢(BB).
Proof. These are elementary properties following from the definition. O

Definition. The state space fod is defined by

w={¢ecd :¢9>0]0¢=1}.

3.2. Theorem (Banach-Alaoglu).The unit ball inA’, A}, is compact in the weak-* topology. And
thus so isA .

Remark. A}, is obviously convex. Since it is compact, by the Krein-Milman theorem it is equal to
the convex hull of its extreme points.

Definition. The extreme points oft}, are called pure states.

Definition. A representation afd on B(H) is aC* algebra homomorphism: A — B(H).

Definition. 7 is called irreducible if the only closed invariant subspacel @ire{0} and.

Definition. A vector® € H is cyclic for if the set{n(A)® : A € H} is a total subset of{.

3.3. Theorem. T.FA.E.

14
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1. 7: A— B(H) is irreducible.
2. Every operator that commutes with allefA) is a multiple of 1. [Schur]

3. Every® € H is cyclic form.

Definition. m; and, are called unitarily equivalent if there exists an isomorphismH; — H,
such thatry(A) = Vm (A)V - forall A € A.

3.4. Theorem. Let m; and m, be irreducible and not unitarily equivalent. Then for every bounded
T :H; — H,, we have

Tmi(A) =m(A)T YVAe A — T=0.
Proof. Consider’™*T and use the above result. O

Definition. r is faithful if one of the following equivalent statements holds.
1. 7(A) =n(B) = A= B.
2. m(A)=0= A=0.
3. A+ 7w(A) is an isomorphism.

3.5. Theorem (Gelfand-Naimark-Segal).Let ¢ be a positive functional osl. Then there exists a
(cyclic) representatiom, on a Hilbert space, with a cyclic vectdr, such that

P(A) = (D4, my(A)Py) VA€ A
Furthermore,r,, is unique up to unitary equivalence.

Proof. Let F, = {A € A : ¢(A*A) = 0}. Itis easy to show thaF, is a left ideal. Let,(A) =
A/Fs. Note thatv(A, B) = ¢(A*B) defines a positive scalar product &{.A). We write{,(A) for
the projection ofA onto.4/F,. By completings,(.A) we get a Hilbert space.

Define the representatiary by 7,(A){s(B) = £,(AB). It follows from (£,(B), m,(A)és(B)) =
¢(B*AB) thatm,(A) is bounded]|m4(A)|| < ||A|l. Thus by continuity it can be extended to all of
H. Set<I>¢ = €¢(1)

All that remains is the proof of uniqueness. lzebe another representation dfon H with cyclic
vector & and such thaty(4) = (¢, 7(A)®) for all A € A. The setsr(A)® andr,(A)P, are
each everywhere dense subspace${ofThus we can defin® by Vr,(A4)®, = m(A)® for all

A € A, andV extends by continuity to an isomorphisth — H. Now we can use this to prove
m5(A) =Vr(A)V ! forall A € A. O

3.6. Theorem (Gelfand-Naimark). For all A € A, ||A|| = sup,, [|7(A)]|

Definition. Let 7, be the GNS representation for the statel he folium of the representatiory, is
the set of all states of the form

Pp(A) = Tr (pms(A)), A€ A,

for p € B(H,) trace class and positive.
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3.7. Theorem. The folium of a faithful representation of(a" algebra.4 is weakly dense it , .
Proof. See Ref. [Fel60]. O

Definition. Let~ be an automorphism of th&* algebrad. We say that the positive linear functional
¢ on A is invariant with respect tg if ¢(v(A)) = ¢(A) forall A € A.

3.8. Theorem (Unitary Representations).Let¢ be as above. Létry, H,, @) be given by the GNS
construction. Then there exists a unitary operdtosuch that

ms(7(A4)) = Uny(A) U VA € A
Proof. DefineU by using

Uny(A) Dy = m4(7(A)) Py

Remark.Note that if we deman@ @, = &, thenU is determined uniquely.

Definition. A subspace of the state spa¢eC A’ _, is said to be separating fot if
A > Apositiveand ¢p(A) =0 Vpe F— A=0.

3.9. Theorem. Let .4 be separable. Then the stafe€ 2-"¢,, is separating for any dense sequence
{¢n} C Ay

Proof. A is separable, therefore the unit ball.4fis second countable, since it is weak-*-metrizable
and compact. Thereford]_ is second countable, and the result follows. O

Definition. Itis customary to say thatis faithful if it is separating. This is sensible by the result of
the next theorem. For eadh C A, we formHr = ©ycrHy andnp = @ycpmy.

3.10. Theorem. Let F' C A}, be a separating family of states fe. Thenr is a faithful represen-
tation of A into B(H).

Proof. Let A be positive and4d € ker (7p). Theng(A) = (my(A)Pys, Py) = 0 for all ¢ € F.
ThereforeA = 0 andker (7,) = {0}. O

3.2 Basic Structure of Representations

Definition. The universal Hilbert space for@* algebra4 and the universal representation fdr
are defined to be

Ha,, ma, .

Definition. The enveloping von Neumann algebrafbis the strong closure o:fA/H (A)in B(HA/H).
The enveloping von Neumann algebra is conveniently denotedrbyBy the following we can also
denote it as4”.
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3.11. Theorem.Let. A be aC* algebra. Then the enveloping von Neumann algebtd o isomor-
phic as a Banach space to the second duallof

Proof. Each state ofd is a vector state ifH 4 o and therefore a normal state gtic. Obviously
each element oft’ is a linear combination of elements 4f , . Therefore we can define a map from
A’ into the pre-dual ofA«.

Now A is ultra-weakly dense itd“, so this map is a linear isometry and eachn the pre-dual of
A will be the image of| 4 in A’. Thus.A’ is the pre-dual of4°°. Therefore4” = A. O

Definition. Given a (non-degenerate) representatiof#{) of aC* algebra4, we can find a projec-

tion in the enveloping von Neumann algeb#¢, which takes us down to the imagef In other

words, this is the projection onto the blogk 7) inside the enveloping von Neumann algebra, which
contains all representation elements. This projection is called the central cover of the representation
(7, H). Denote this projection by(r).

3.12. Theorem (Central Projections).Let (1, H;), (72, Hz2) be two representations of@* alge-

bra A. These representations are equivalent if and onty7if ) = c¢(m). The mapw, H) — c(m) is

a bijection between nonzero central projections4ff and equivalence classes of representations of
A.

Proof. For each central projectign # 0 in .A“, we can form a representation f@r with the map
A — Ap, A € A. The Hilbert space for the representatiom%A/H, and its central cover is. Thus
we associate a representation with each central projection. NowH) is a representation then
clearly it is equivalent to the representation A — Ac(m) onc(m)H .y, - O

Remark.It is important to know when a separalil& algebra has a representation on a separable
Hilbert space. In particular, the enveloping von Neumann algebra acts on a generically non-separable
space, and we would like to know how this interacts with representations.

Definition. A von Neumann algebra is calleds-finite or countably decomposable if each set of
pairwise orthogonal non-zero projectionsir is countable. A projectiop on M is calledo-finite

if pMp is o-finite. If M acts on a separable Hilbert space then i-nite. A partial converse of
this is true.

3.13. Theorem. A von Neumann algebra1 has a faithful normal representation on a separable
Hilbert space if and only ifM is o-finite and contains a strongly dense sequence (is countably
generated).

Proof. Let M C B(H), H separable, theiM is o-finite. Since the unit ball i3(H) is second
countable for the strong topology, the unit ballAr is second countable and 2d is separable in
the strong topology.

Conversely, for each € ‘H define[M°v] € M to be the projection onto the closure of the subspace
M-cv. Let{[M°*v]} be a maximal family of these projections, S Mv] = 1. If M is o-finite then
{v,} is countable. Lety(A) = > 27" (Av,,v,), theng is a normal state oM. It is also clear that

¢ is faithful. M is countably generated therefore there exisis algebraA which is separable and
strongly dense inV1. H, contains a dense separable subspace, so it is separable. O

3.14. Corollary. A representatiorir, H) of a separable”* algebra.4 is equivalent to a separable
representation if and only if() is o-finite in A,
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3.15. Theorem. Let (m;,H;) and (w9, H2) be non-degenerate representations af"aalgebra A.
Then T.FA.E.

1. ¢(my) L e(m).

2. (m B m)A“ = 7 (A) b 75(A)

3. (m ®m) A" =7¢(A) ® 75(A)

4. There are no equivalent subrepresentation&of ;) and (my, Hs).

Proof.

1—2

ker (11 @ mo)" = A"(1 — ¢(m) — c(m))
= ((m ® m2)" A)“ = A%(c(m1) + c(m2))
— ((71'1 D 7'('2)./4.)06 = 7T1<.A)CC © WQ(A)CC.
2=—3 Follows from von Neumann’s bicommutant theorem.

3=—4 Assume there exists an isometry H; — H;. By definition of equivalence*u € (.A),
uu* € mo(A)°, andu* (ma(A)uu*)u = 7 (A)u*u for all A € A. Now

(m1 @ m2)(A)u = (m1(A) + ma(A))u
=um (A) = m(A)u

regardingu as an element d8(H; & H.,)

u(mi(A) + ma(A))
= u(m @® m2)(A)
=u € ((m & m2)(A))

c

By assumptior{(m; & m2)(A))° C B(H1) ® B(H2). Sou = 0.

4—>1 If 1 does not hold then consider subrepresentations with central cover: ().

]

Definition. Representations satisfying the properties of the previous theorem are called disjoint rep-
resentations.

Definition. A non-degenerate representation ) of a C* algebraA is called a factor represen-
tation whenr(A)“ is a factor. Note thatr, H) is a factor representation if and onlydfr) is a
minimal projection in the center od”. Two factor representations are either equivalent or disjoint.

Definition. Let (r,H) be a representation of@* algebraA. If K C H is a linear subspace with
m(A)K C K, thenK is called reducing forr. Representations satisfying the conditions of the
following theorem are called irreducible.
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3.16. Theorem (Irreducible Representations).Let (7, H) be a nonzero representation of & al-
gebraA. Then T.EA.E.

1. There are no non-trivial reducing subspacesfor
2. 1(A)° = {al}.
3. 7(A) is strongly dense i8(7).
4. Each non-zero € H is cyclic form(A).
5. (m,’H) is equivalent to a cyclic representation associated with a pure state.
Proof. The proof is straightforward computation. See [Ped79]. O

3.17. Corollary. Two irreducible representationsr;, H;) and (w,, Hz) of A are either disjoint or
equivalent.

Proof. If they are not disjoint then they have equivalent subrepresentations by a previous result. But
irreducible representations have only trivial subrepresentations by the above. O

3.18. Theorem (Repelling Representations)Let ¢ and ) be pure states of &™* algebra A. If
l¢ — 9| < 2then(my, H,) and (my, Hy,) are equivalent. If they are equivalent, then= ¢(u* - )
for some unitary: € A.

Proof. Assume(n,, H,) and(my, Hy) are not equivalent. Then they are disjoiatr,) L c(my).
Now ¢(c(my)) = 1 andy(c(my)) = 1, s0¢(c(my)) = 0 andy(c(my)) = 0, s0fl¢ — [l = (¢ —
) (c(mg) — c(my)) = 2.

To prove the second part, assume the representations are equivalent. Then fer evdrwe have
P(A) = (mp(A)E, &) for some unitang € H.

Let u be the unitary which takesto &, my(u)®, = £. Then

PY(A) = (m(A) 7y (u) Py, mp(u) Py)
= (my(u" Au) Py, Dy)
= ¢(u"AU).

O

Remark.Previously we introduced the idea of the Gelfand transform of a commutative Banach al-
gebra. This was a map from algebra elements to functioriks: A — C. The generalization of
this to the non-commutative case is connected to representation theory.

Definition. Let Irr (A) be the set of irreducible representations4ofDefine the spectrum ofl, A,
to be the set of equivalence classes of irreducible representatiohs of

Remark.When A4 is commutative, all the irreducible representations are one-dimensional.. Ahen

is nothing but the set of non-zero complex homomorphism4,afhich is the Gelfand transform of

A. One approach to the non-commutative case is through the so-called decomposition theory. The
basic object in decomposition theory is the atomic representation.
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Definition. Let.4 be aC* algebra. For eache A choose pure stat® with representatio(r;, H;).
Define the atomic representation to (g, H;) with

To=@ei™  Ha= By He.

Remark. The above definition involves a choice, but the equivalence for different choices is easy to
show, so the atomic representation is essentially unique.

3.19. Theorem.
ma(A) = P B(H,).

teA

Proof. By a previous theorem,(A) is strongly dense if8(H;) for eacht. Thereforer;(A)“ =
B(H;). Ther,'s are mutually disjoint so the result follows. O

Remark. The decomposition theory proceeds by makiﬁ'gwto a measure space, beginning with the

so-calledD-Borel structure. The first major result is a classification of equivalent representations
according to the measures which are associated to them via their states. See [Kad57]. The converse
construction, building representations up from their measures leads to the theory of the direct integral.



Chapter 4

Structure Theory Il

4.1 Weights and Traces

Definition. Let.A be aC* algebra. A weight o is a functiong : A, — [0, oo] such that

1. p(aA) = ap(A) VAe A, a€R,.
2. 9(A+B)=¢(A)+¢(B) VA, Be Ay,

whereA, is the set of positive elements 4f.

Definition. A weight is said to be densely defined if the st = {A € A, : ¢(A) < oo} is dense
inA,.

Definition. Let M be a von Neumann algebra. We say thas semi-finite ifMﬁ is weakly dense
in M. For von Neumann algebras this coincides with the notion-fifite.

Definition. A weight¢ on a von Neumann algeby& is calledo-normal if there exists a sequence
{#,} of sequentially normal positive functionals @ such thai)(z) = > ¢, (z) forallz € M.

Definition. ¢ is called lower semi-continuous if for eache R, the set{A € A, : ¢(A) < a}is
closed.

Definition. A trace on aC* algebraA is a weighty such that)(u*Au) = ¢(A) forall A € M, and
u unitary.

4.1. Theorem (Radon-Nikodym). Let ¢ and ¢ be normal functionals on a von Neumann algebra
M such thath < i) < ¢. Then for each\ € C with Re A > 1/2 there is an elemerit € /\/li such
that

¥ = Ap(h:) + A"d(-h).
If ¢ is faithful thenh is unique.

Proof. Let N = {\¢(h-) + X\*¢(-h) : h € ML} . N is compact and convex sincet’, is convex
and ultra-weakly compactV is a subset of the pre-dual g#1. If 1) ¢ N, then there is an element

21
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in the self-adjoint part o\, M,,, saya € M,,, and a € R such that)(a) > t, N(a) < t. Let
a=ay —a_andtakeh = [a.]. Then

W(ay) > Ylay —a ) >t > 2Rerplay) > dlay) =<
If ¢ is faithful and ify) = A\p(k-) + A*¢(-k) for somek € M,,, then since
A+ A)(h — k)% = Ah(h — k) + X*(h — k)b — Me(h — k) — X (h — k)k,
we have
Re A ((h — k)2) = d(h — k) — (h— k) =0,
— h=k.
U

Definition. Let M be a von Neumann algebra on a separable Hilbert space. We have the following
nomenclature.

e M is called finite if it admits a faithful, normal, finite trace.

e M is called semi-finite if it admits a faithful, normal, semi-finite trace.

e M is called properly infinite if it does not admit a non-zero, normal, finite trace.

e M is called purely infinite if it does not admit a non-zero, normal, semi-finite trace.

4.2. Theorem (First Decomposition).Let M be a von Neumann algebra. Thér has a unique
decomposition

M:MI@MQ@M37

where

o M, is finite,
e M, is semi-finite but not properly infinite,
e Ms is purely infinite.

Proof. Let ¢ be a normal trace oM, so ¢ is weakly lower semi-continuous. Therefaké, =
{x € M : ¢(x*z) = 0} is a weakly closed ideal of1. ThereforeN,, = (1 — p).M for some central
projectionp € M, andg¢ is faithful onp M.

Also, the weak closure aM? = {z € M : ¢(z) < oo} is an ideal of M, so there is a central
projectiong such that is semi-finite ony M and purely infinite or{1 — ¢) M. Thereforep is faithful
and semi-finite omgM.

Let {¢,, p,} be a maximal family of normal finite traces, and pairwise orthogonal projectiops
such thatp,, is faithful onp, M. M is o-finite [Ped79] so{¢,, p,} is countable. Define

$(x) =Y 27" 0n(1) " bu(par).
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If p=>" p, theng¢ is faithful, normal, and finite op.M, and by maximality of ¢,,, p.}, (1 — p)M

is properly infinite.

Let {¢,, ¢, } be a maximal family of normal, semi-finite traces and pairwise orthogonal projec-
tionsg, < 1 — p such that), is faithful ong, M. Lety(z) = > ¥, (qux), ¢ = > gn- Theng L p,

1 is faithful, normal, and semi-finite opM. (1 — ¢ — p) M is purely infinite by maximality of

{¥n, qn}- O

4.3. Theorem. If M is a semi-finite von Neumann algebra on a separable Hilbert space,tfen
is semi-finite.

Proof. The proof requires a somewhat technical result. See [Ped79]. O

4.2 Types

Definition. Let p andq be projections in &' algebraA. If there exists a partial isometry € A
such thatv*v = p andvv* = ¢, we say thap is equivalent ta, writing p ~ ¢. Recall thatu is

a partial isometry ifu*u (and thusuu*) is a projection. This coincides with the previous notion of
projection equivalence.

Remark.As an example, supposé = B(H), then two projections are equivalent if and onlyH
andqH have the same dimension. Thus the equivalence classes of projections on a von Neumann
algebra are a sort of “generalized dimension” set.

Definition. Letx be in.M,,. The central cover af, ¢(x), is the infimum of alk: € Z,, with z > z.
It exists becausg,, is a complete lattice.

Definition. A projectionp is called abelian ip.Ap is a commutative algebra.

Definition. A von Neumann algebrd is called type! if there is an abelian projectigne M with
c(p) = 1.

4.4. Theorem. Let M be a von Neumann algebra of type I, on a separable Hilbert space, apd let
be an abelian projection with(p) = 1. Then there is a faithful, normal, semi-finite tragen M

with ¢(p) = 1.

Proof. pMp is a commutative von Neumann algebra on a separable Hilbert space, therefpres
L* (T) u for some locally compact, Hausdorff, second countable measure $paith measure..
Take any finite measure dh equivalent tou as¢ on pMp. Normalize top(p) = 1. ¢ extends to a
normal semi-finite trace oM, and since:(p) = 1, ¢ is faithful on M. O

Definition. A von Neumann algebra is said to be homogeneous of degreé 1 = > | p;, for
some{p; } a set ofn orthogonal, equivalent, abelian projections.

4.5. Theorem. Let M be a von Neumann algebra of typen a separable Hilbert space. Thewvl
has a unique decomposition

M:@Mn, 1<n<oo,

with M,, homogeneous of degree
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Proof. First we show that every type M contains a nonzero, homogeneous, central summand. Let
{¢;} be a maximal family of orthogonal abelian projectionshut with ¢(¢;) = 1. The family is
non-empty by definition of typé. Letz = 1 — ¢(1 — > ¢). If z = 0, then there would be an
abelian projectiony < 1 — > ¢; with ¢(q) = ¢(1 — > ¢;) = 1, contradicting the maximality of
{@¢:}. Thereforec(z — > 2q;) = zc(1 — > ¢;) = 0, butz # 0. Thereforez = > z¢;, and soMz is
homogeneous.

Let {zj(")} be the maximal family of orthogonal central projections each of which is a sum of
orthogonal, equivalent, abelian projectiofls;}. c(p;i) = z; andp;, = Zj p;i is abelian for each

1 <i<n.Lete, =3, 2. Thenc(p;) = e,, so{p;} is a family of orthogonal, equivalent, abelian
projections since equivalence of projections follows from equality of their central covers.

Now . p; = Zij Pji = Zj z; = e,, SOMe, is homogeneous of degree Forn # m, e,e,, = 0
by the well-defined-ness of the degree of homogeneity.

Since{z;} is maximal M(1—-> e,,) contains no homogeneous central summand. &gt —> e,
is clearly of typel, which is a contradiction. O

4.6. Corollary. Let M be a factor of typd. ThenM is isomorphic to3(H) wheredim H is the
degree of homogeneity @#.

Proof. Let p be a non-zero abelian projectionM. SinceM is a factorp is minimal and:(p) = 1.
Let ¢ be a normal state with(p) = 1. Then¢ is pure and sor,, H,) is irreducible. Thusr,(M) =
B(H,). The degree of homogeneity of (M) is obviously equal to that faM. O

4.7. Lemma. Let M be a von Neumann algebra of tygeon a Hilbert spaceH. ThenM°€ is
isomorphic to a von Neumann algebra with abelian commutant.

Proof. Let p be an abelian projection with(p) = 1. Then M = M*p, and (M°p)° on pH is
pMp. O

4.8. Lemma. Let M be a commutative von Neumann algebra on a Hilbert sgéac&henM¢ is of
typel.

Proof. Let ¢ be a non-zero projection iM*© and choose a unit vecterc ¢H. Let p be the cyclic
projection on the closed subspddelv]. Thenp € M¢andp < q.

Now Mp is commutative and has a cyclic vector, so it is maximal commutativeronTherefore
Mp = (Mp)° = pM°p. Thereforep is an abelian projection ant® is type!. O

4.9. Theorem. Let M be a von Neumann algebra. Then T.FA.E.

1. Mis of typel.
2. Mcis of typel.
3. M is isomorphic to a von Neumann algebra with abelian commutant.
4. Mcis isomorphic to a von Neumann algebra with abelian commutant.

Proof. 1 =4, 2=—>-3 follow from the first lemma.
4 — 2, 31 follow from the second lemma. O
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Definition. M is said to be typ€1 if it is semi-finite, but contains no non-zero abelian projections.
Definition. M is said to be typd /1 if it is purely infinite.

Remark. Notice thatM is finite if it is homogeneous of degreewith n < co. Itis properly infinite

if n = co. We thus subdivide typé into type/,, 1 < n < oco. If M istypell, then we say it is
type I1; if itis finite and typel ., if it is properly infinite. The following theorem is a restatement
of this classification.

4.10. Theorem (Second Decompositionl.et M be a von Neumann algebra on a separable Hilbert
space. TheoM has a unique decomposition into central summands of each type,

M :M]@"'@MIOC@MHl@MHOO@MHI-

Remark.We would like to extend the notion of type &* algebras which are not necessarily von
Neumann algebras. This is what we do in the following.

Definition. Let 4 be aC* algebra, and le!l € A. The hereditary algebra generated Ays the
norm closure ofA A A.

Definition. A positive elementd € A is called abelian if the hereditary algebra generated lya
commutative algebra.

Definition. A is a typel C* algebra if each non-zero quotient @f contains a non-zero abelian
element. IfA is actually generated by its abelian elements, then wedsigyof type Ij.

Definition. If .4 contains no non-zero abelian elements, then we say it is antiliminary.

Remark.A von Neumann algebra of typkis not in general &* algebra of typd. As an example,
let M = B(H) for an infinite-dimensional. Let KC(H) denote the compact operators. Then
B(H)/K(H) contains no abelian elements.

4.11. Lemma. Let A be a positive element of @ algebra.A. ThenA is abelian if and only if
dim7(A) < 1 for every irreducible representatiomr, H) of A.

Proof. SupposeA is abelian and, H) is an irreducible representation. ThefA) is abelian in
7(A), sor(A)B(H)r(A) is commutative and séim 7(A) < 1.

Conversely, letA be positive in4 and supposdim 7(A) < 1 for each irreducible representation
Then AAA is commutative in the atomic representation, which is faithful A9e abelian. O

4.12. Lemma. Let. A be aC* algebra acting irreducibly on a Hilbert spadé such thatANK(H) #
0. ThenK(H) C A and each faithful irreducible representation dfis unitarily equivalent to the
identity map.

Proof. AN KC(H) # 0, therefore there is a finite-dimensional projectiondm C(H) and a one-
dimensional projectiop € A. If £ is a unit vector irpH then for anyy € H there is amtA € A such
that A¢ = n; A acts irreducibly orf{. ThereforeA*pA is the projection orCr. Thus.A contains all
the one-dimensional projections, §6H) C A.

Furthermore, let be a pure state ad. Then(n,, H,) is faithful. ¢|c) is non-zero sincéry, H,)
is faithful, so it is a state fokC(H). Since the dual ofC(H) is the set of trace class operators,
o(z) = (2€,€), somel € H, forall z € K(H).
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But the extension of a state from an ideal to the whole algebra is uniquepsol is a vector state

o(A) = (A, €). Thus any suclky determines a cyclic representation with a cyclic ve¢toand any
suchg is equal to the identity representation on cyclic vectors, and thus unitarily equivalent to the
identity representation. O

4.13. Theorem. Let A be aC* algebra of typel. ThenC(H) C = (.A) for each irreducible repre-
sentation(rw, H) of A.

Proof. (7, H) is irreducible. By the first lemma, fad abelian in.A with norm 1, there is a one-
dimensional projection of. By the second lemm&(H) C = (A). O

4.14. Corollary. Let.A be a typef, C* algebra. Then for every irreducible representation H) of
A, m(A) = K(H).

Proof. (A) is generated by its abelian element§A) C K(H). But K(H) C 7(A). O

Definition. A C* algebraA is called liminary ifr(A) = K(H) for each irreducible representation
(m,’H) of A. Thus each typd, C* algebra is liminary, but the converse is false.

Remark. The following are useful properties which we state without proof.
4.15. Theorem. A liminary C* algebra is of typd..
Proof. See [Ped79]. |

Definition. If A is aC* algebra, we define a composition series to be a strictly increasing family of
closed idealdZ,} indexed byx € [0, 5], a segment of the ordinals, with = 0, Zs = A, and such
that for each limit ordinaly we have

Z, = norm closure| | J Ia> :

a<ly

4.16. Theorem. Let 4 be aC* algebra. Then T.FA.E.

1. Ais of typel.

2. A has a composition serig€,, }, a € [0, 8], such thatZ,,, /Z,, is typel, for eacha < £.

3. A has a composition serig€,, }, « € [0, 3], such thatZ,,,/Z, is liminary for eacho < (3.

4. A has a composition seridd,, }, a € [0, 5], such thatZ,,,, /Z, is typel for eacha < 3.
Proof. See [Ped79]. |
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Matrices

5.1 Inductive Limits

Definition. Define a directed sdtto be a partially ordered set such thatif3 € I then there exists
vyelwitha <, [ <7.

Definition. Let / be a directed set. LeX“ be locally convex spaces with varying in /. Let
X =U,e; X% X is alocally convex space. Suppose that ( if and only if X* C X and that
the inclusion is continuous. Suppose also that for any cohvex X, V' is a nbhd. ofU ¢ X if and
onlyif Va € I V N X“is anbhd. ofU € X. When all the above conditions hold we say thats
the inductive limit of X «.

Definition. When theX“ are Banach spaces, in particular Banach algebras, the inclusions in the def-
inition of inductive limit are bounded linear maps. When these inclusions also datisfyp ; || ¢aipnas|| <
oo for all a, the system is called a normed inductive system, and the Nnmstcalled a normed induc-

tive limit. This extra uniformity condition implies thaft|| = lim sup; ||¢as()||, for € X« C X,

is a seminorm onX. Quotienting by elements of zero seminorm and completing gives a Banach
space, which will also be called the inductive limit&f, and again we will writeX = lim_, X°.

5.2 Glimm Algebras

Remark.Now we construct some antiliminary algebras which are interesting both as examples of
non-intuitive algebras and as physical fermion algebras. These are the Glimm algebras. We need the
notion of inductive limits for locally convex spaces.

Definition. Let M,, be theC* algebra ofm x m matrices, identified with3(H,,). Suppose :
M,, — M, is a morphism of\/,, into M,, with i(1) = 1. Letd = Tr (i( ﬂ”))), wherev!™ is the
matrix with 1 in the (1, 1) place and zeroes elsewhere. We haxé= n.

Let {s(n) : n € N} be a sequence of natural numbers, greater than ones(Lgt= [],_, s(k).
Then consider the inductive system

Ms(l) — Mgy —> Ms(n)! —

27
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with the inclusion map. The inductive limitM,, = UM, is not necessarily norm complete, but
its completion,A4., is aC* algebra which is called the Glimm algebra of rafn)}.

Definition. The fermion algebra is the Glimm algebra for whigh) = 2Vn € N.

5.1. Theorem. Every Glimm algebra is a separable, simple (contains no non-zero closed ideals)
C* algebra and has a unique tracial state.

Proof. Each M, is separable and/ is dense ind,, so A, is separable. lfr is a non-zero
morphism of A, themr\Ms(n)! is an isometry for each. Thereforer,,  is an isometry and is an
isometry. Thus4,, is simple (every morphism is an isometry).

Let 7., be the normalized trace aW,,). Thenr,, oi = 7,, so there is a unique tracial state on
M., and so it is tracial omd,,. Conversely if¢ is tracial on A, then from the uniqueness of the
trace onB(H () ¢ = 7. O

5.2. Theorem. There exists a factor of typd;.

Proof. M = 7, (A)“ has a non-zero finite normal trace, the extension.oker (7) is a central
projection, so we can assume thais faithful on z M for some central projectiog; 7 is faithful on
M S0z # 0.

Sincer is the unique tracial state oA, the center ok M is trivial, sozM is a factor. This factor
is finite but not finite-dimensional, so it is of tygéd;. O

Remark.Let F denote the fermion algebra. For eaclke [0, 1/2] we can construct a state dhas
follows.

Let {A"} be a sequence of convex combinations each of length 2At.e= 2, A7 + A2 = 2, etc.
Note thatM,,,, = M1 @ - - - ® My, SO each element df/, ., can be written

Let

This extends to a unique state &n It is called the product state oh. Note that the tracial state on
F is the product state with? = 1/2 for all i < 2,n € N. note that ifx € M,y andy € M),
theng (zy) = ¢a(z)Pa(y).

Remark.For each\ € [0,1/2] we choose\ = {A"} to be the sequence of convex combinations
A =X\ A} =1- )\ foralln € N.

Let ¢, be the product state associated witland let(r,, H,, £,) be the cyclic representation &f
associated witlp,. We already know that

mo(F)™ = B(Ho),
1 /2(F)™ = factor of typel I;.

5.3. Theorem. Each product state of a Glimm algebra is factorial, i.e. gives rise to a factor repre-
sentation.
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Proof. Let ¢, be a product state oA, of rank{s(n)}. Letz € Z (my(Ax)®). By Kaplansky’s
density theorem there exists a sequefgg in A, with ||y, < ||z|| andm(yx) — 2z weakly. Let
Uy denote the unitary group off,(,,).. This is a compact group with Haar meastte Let

2L = / duuygu®, for fixedn.
Us(n)!

2, commutes withV/,(,.y;, and for eachu € U,y we haver, (uy,u*) — ma(u)zma(u*) = 2 weakly.
Thereforer(z;) — = weakly by the Lebesgue dominated convergence theorem.

So for everyr,y € M, we have

(282, &y) = lim (7 (21)&s, &y)
= lim ¢ (y* 2. x)
= lim ¢y (zx) A (y"x)
= (26n,6n) (&5 &y) -
This holds for anyn so z = (24,&4) 1, SO thatz is a multiple of 1. Thereforer, (A, ) is a
factor. O

Remark.Let IT be the group of permutations &f which leave all but a finite number of elements
fixed. For a € II we define a unitary operator by

Uy Hon — Haon
U (V1 ®@ - @ V) = V1) ® -+ - @ V().

Fix a sequencdu,} C {u, : t € II} such that the permutatio} corresponding ta:, satisfies
to(1) >n Vi <n.ltisclear thaip,(wzu;) = ¢ Vo e F,t ell.

5.4. Lemma. Letz € F, thenmy (u,zul) — ¢y (z)1 weakly.

Proof.

oA unzuyy) = Oa(UnzUy2"y)
= Oa(unzuy,)or(2"y)

forall x,y, 2 € My andn > k. By continuity ¢, (z*u,zuly) — ox(x)ox(z*y) forall z,y, z € F.
Therefore(my (up,zu) )&y, &) — da(x) (&, &) Now {my(u,zu)} is bounded and weakly conver-
gent on a dense set of vectors. Therefor@u,zu*) — ¢, (x)1 weakly. O

5.5. Lemma. Let ¢ be a positive functional otF with a normal extension ta,(F)“ for some
A € [0,1/2]. Suppose also that(u.xu;) = ¢ (x) Vo € F,t € II. Theny is a scalar multiple of,.

Proof. ¢ is weakly continuous on bounded setsrif(F) so by the lemma)(z) = ¢ (uyzu)) —

or(x)1p(1), therefore) = ¥ (1)¢,. O

5.6. Theorem. The von Neumann algebrast, = m,(F)“, for0 < XA < 1/2, are factors of
typelll.
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Proof. EachM,, is a factor by a previous result. Lebe a normal, faithful, semi-finite trace oW ,.
Thus there exists a unique positive operdtan , such thaty,(z) = 7(hx). Now h is unique and

T(ma(uy ) hma(ug)x) = 7(hay (ug)zmy(u)))

somy(uf)hmy(u;) = hforallt € I1.

Picke > 0 and puty(-) = 7(h(e + h)~'-). h(e + h)~! commutes with allr,(u;) so we have
Ye(ma(upzuy)) = e(ma(x)). Thereforep. = 1. (1)py.

Chooser € (M), such thatr(z) < oo and¢,(z) = oco. This is possible since is semi-finite.
Then

Ye(1)oa(z) = Ye(z) = 7(h(e + h)"'w) — 7(2).

Thereforey (1) — a < co ase — 0, and for anyr € (M, ), we have

ag(z) = lim ¢c(1)¢x(x)
=lim7(h(e + h) 'z)

=7(x).

Thereforer(z) = a¢g,. But we know that, is not a trace when # 1/2, so there is a contradiction.
ThereforeM,, is of type/11. O

5.3 Mat, (A)

Definition. Let.A be a Banach algebra. Lktat,, (.4) denote the: x n matrix algebra over. Then
Mat,, (A) can be made into a Banach algebra in a number of equivalent ways.

Definition. DefineGL,(.A) to be the group of invertible elementshfat,, (.A) which are congruent
to 1, modMat,, (A).

Remark.If A has a unit, the”L,,(A) is isomorphic to the group of invertible elements\idt,, (A).

Definition. Let.A be aC* algebra. Definé/,,(.A) to be the group of unitary elementshiat,, (A1)
which are congruent tb, modMat,, (A).

Definition. Mat., (A) is the inductive limitMat, (A) = lim_, Mat,, (A) with the obvious choice
of isometric inclusions.

Definition. GLy(A) =lim_, GL,(A).



Chapter 6

Automorphism Groups

6.1 Automorphisms and Invariant States

Remark.It is necessary to fix some notation and basic ideas from the theory of locally compact
groups. LetM(G) denote the Banach space of bounded complex Radon measures on a locally
compact groug>, identified withCy(G)". M (G) possesses convolution and involution but is not in
general aC* algebra,;

/ F(8)d( x v)(s) = / / f(ts)du(s)du(t),  f € Col(G)
/ F(s)du*(s) = / (s Ydu()]", £ € Go(G).

Definition. A unitary representatiofw, H) of G is a homomorphism — w, of G into the unitary
group of B(H), which is continuous in the weak topology 6i{+). Note that the weak, ultra-weak,
and strong topologies coincide on the unitary groug(). The representation is called uniformly
continuous if it is continuous in the norm topology ().

Definition. The universal representation,, H,) of L' (G)dg is the direct sum of all non-degenerate
representations df' (G)dg. The groug’* algebra of7, C*(G), is the norm closure of,, (L' (G) dg)
in B(H.,).

Remark.By a representation of a Banach algebra, here we mean an involution-preserving homomor-
phism into3(H), for a Hilbert spacé-.

Definition. For eachu € M(G) andf € L? (G) dg the convolutiory: x f is in L? (G)dg. Define
the map

A M(G) — B(L* (G) dg)

A f=pxf.
It is easy to check that it is a representation\dfG). We call it the regular representation.

Remark.We can identify the points aff with the point measure§, s € G. The restriction of\ to
the point measures is thus identified with the unitary representatien\, of G on L? (G))dg given

by
A hH)@) = f(s7'1), feL?(G)dg

31
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Definition. The group von Neumann algebra 16t M(G), is the weak closure of(L! (G) dg) in
B(L? (G)dg).

Definition. SupposeA is a C* algebra withA C L* (G)dg and thatA is invariant under left
translation. We say that a stateon A is a left-invariant mean ifn(\; f) = m(f) for all f € A.

Definition. If there exists a left-invariant mean dn° (G)dg then we say tha¥ is amenable.

Definition. Let UC’(G) denote the algebra of bounded uniformly continuous function& ohet
C’(G) denote the algebra of bounded continuous function§'on

6.1. Theorem. LetG be a locally compact group. Then T.FA.E.

1. G'is amenable.
2. There exists a left-invariant mean 6A(G).
3. There exists a left-invariant mean ot (G).

4. There exists a state dif° (G)dg, m, such thatn(u x f) = u(G)m(f) for eachy € M(G)
andf € L™ (G)dyg.

Proof. See [Ped79]. O
6.2. Theorem. G is amenable if and only if the regular representation is faithful6niG).

Proof. See [Ped79]. |

Remark.When we speak of the Haar measure(@nwe mean, for example, the left Haar measure
so thatd(ts) = ds. There is also a right Haar measure, and it is connected to the left Haar measure
by the modular functiol\ : G — R, d(st) = A(t)ds, d(s™') = A(s) " ds.

Definition. A C*-dynamical system is a tripled, G, «) with a C* algebraA, a locally compact
group GG, and a continuous homomorphism: G — Aut (A). Aut(A) is equipped with the
topology of pointwise convergence, so for eatle A a(A) : G — Aut (A) given byt — o, (A)
is continuous. When; and.A are separable we call this a separable dynamical system.

Remark.When M is a von Neumann algebra we consider the topology of pointwise weak conver-
gence onAut (M). This is equivalent to pointwise ultra-weak convergence and pointwise strong
convergence since these coincide on the unitary grouptadnd the unitary group is stable under
Aut (A) and generates1 linearly.

Definition. A W*-dynamical system is a tripleM, G, «) with a : G — Aut (M) continuous in
the topology of pointwise weak convergence.

Definition. A covariant representation of @*-dynamical systemA, G, «) is a triple (7, u, H)
where (7, H) is a representation ofl, and(u, H) is a unitary representation ¢f, and we have
m(a(A)) = wm(A)us.
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Remark.Let (A, G, «) be aC*-dynamical system. Lek (G, .A) be the space of continuous func-
tions of compact support frof¥ to .A. Define involution and convolution oR (G, .A) by

yH(t) = Al) " an(y(t™)"),
v x2)0 = [ ls)alels s
Define||y||, = [ ||ly|| d¢t. ThenK (G, A) is a normed algebra with isometric involution. Denote its

completion byL! (G).A.

Let A € Aandf € L' (G) dg. We can definel ® f € L' (G) Asuchtha{A® f)(t) = Af(t). The
span of such elements is densd.in(G).A.

6.3. Theorem. If (7, u, H) is a covariant representation ¢4, G, «), then there exists a non-degenerate
representatior{r x u, H) of L' (G).A such that

(7 % u)(y) = / r(y())udt forally € K(G, A).

Moreover, the corresponden¢e, u, H) — (7 x u, H) is a bijection onto the set of non-degenerate
representations of! (G).A.

Proof. See [Ped79]. O

Definition. The universal representation,, H,) of L' (G).A is the direct sum of all non-degenerate
representations af! (G).A.

Definition. The crossed product ¢f4, G, ) is the norm closure of, (L' (G) A) in B(H,). ltis
denote byG %, A.

Remark.Now we will introduce some ideas due tod8nher which have direct physical relevance.
See Refs. [Sto69, Sto67, DKS69].

Definition. Let Conv (/') denote the smallest convex subset of the vector spacelV’ containing
W. We say that= is represented as a large group of automorphism4 df for eachG-invariant
statep, we have

weak closurgm,(Conv (ag(A)))} ﬂ@(A)C +@, VAe A

Definition. We say that the”*-dynamical systentiA, G, «) is asymptotically abelian if there is a
netA C G such that

|Aay(B) — ay(B)A|| — 0 ast — ocoin A.
We say that it is weakly asymptotically abelian if we have
d(Aa(B) — ay(B)A) — 0 ast — oo in A, forany¢ € A’

6.4. Lemma. Let (A, G, «) be a weakly asymptotically abeliarf-dynamical system. Ther is a
large group of automorphisms.
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Proof. Let ¢ be an invariant state and € A. Let z denote any weak limit of the bounded net
{my(at(A)) : t € A}. Then clearlyz is in the weak closure ofr,(Conv (ag(.A))). Moreover, for
any B € A andy in the pre-dual ofr,(.A)“, we have

P(zms(B) — my(B)z) = lim p(my(ar(A) B — Bau(A)))
=0

Thereforez € 7,(A)°. SoG is large. O

Definition. If ¢ is aG-invariant state of4, then we say thap is asymptotically multiplicative with
respect to the net if

d(a(A)B) — ¢(A)p(B) ast — oo in A.
Such states are also called strongly clustering or strongly mixing.

6.5. Theorem. Let(A, G, «) be a weakly asymptotically abeli&ri-dynamical system and consider
a G-invariant statep on A, with covariant cyclic representatiofr, u?, Hy, &;). Then T.EA.E.

1. ¢ is asymptotically multiplicative.

2. ¢ is an extreme point of the set 6finvariant states on4, and for eachA € A the net
{my(a(A)) : t € A} is weakly convergent to(A) - 1in B(Hy).

3. The net{ug5 cte A} is weakly convergent il8(7#,) to the one-dimensional projection on
C¢&,.
Proof. See [Sto69, Sto67, DKS69]. O

6.6. Corollary. Let (A, G, «) and ¢ be as above. If is a factor state, then it is asymptotically
multiplicative.

6.7. Theorem. Let (A, G, o) be aC*-dynamical system withy a large group of automorphisms.
Let ¢ be aG-invariant factor state with cyclic covariant representatian;, u®, Hg, ). LEEM =
7,(A)%, and lety be the vector state oB(H,,) determined by,. Then

1. M is finite <¢ is a trace onM.
2. M is semi-finite but infinite=>¢ is a trace onM¢, but not onM.
3. Mistypelll <= ¢ is not a trace onM°.

6.8. Theorem. Let (A, G, a) be a weakly asymptotically abeliari*-dynamical system witty a-
belian, and lety be aG-invariant factor state of4 with cyclic covariant representatiofr, u?, Hy, &)
Let M = 7,(A)“, and lety be the vector state oB(H,,) determined by,. Then

1. M =C-1<«<=¢is multiplicative.

2. M = B(H,),dimH4 = oo <=¢ is a pure state but not multiplicative.
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3. Mistypell, <= ¢ is a trace but not multiplicative.
4. Mistypell,, < ¢ is atrace onM° but ¢ is neither pure nor a trace.

5. M is typelI] <=¢ is not a trace onM°.

Remark.In the case thaf’ is abelian we have a zoo of results. These results can be thought of
as harmonic analysis on operator algebras. They will lead us to the Tomita-Takesaki theory, the
introduction of complex function theoretic techniques for one-parameter groups (KMS states, etc.),
and a classification of factors of tygé /.

Remark.First we want to associate subsets of the dual groug td subspaces of a Banach space
X, when@ acts as isometries aki. WhenX is aC* algebra and-+ acts as automorphisms we will

be able to construct a spectral measum@n the dual group with(2) corresponding to the support
projection of the subspace associateftdNVhen this happens we will be able to construct a unitary
representation aff which, under certain conditions, is covariant for the automorphism representation
of G.

Definition. Let X and.X. be two Banach spaces in duality via a bilinear fdrm). This means
e If x € X then(z, ) € X.".
o If £ € X, then(-,¢) € X'.

e The mapse — (x,-) and¢ — (-, &) are isometries oK and X, onto weak-* dense subspaces
of X," and X' respectively.

Let B,(X) and B,(X.) denote the bounded linear operators which are continuous in(tkieX. )
ando(X,, X) topologies. Note that i/ € B(X) thenU € B,(X) ifand only if UT € B(X,).

A representation of a locally compaGton X is ac (X, X,) continuous homomorphism— «; of
G onto the group of invertible elements i, (X). We say thatv is an integrable representation if
for eachy € M (G) there is a (necessarily unique) € Bo(X) such that

(@(0).6) = [ (aule). dult), Vo€ X.g € X..

Note thato” is integrable whenever is integrable.

6.9. Lemma. Let X be a Banach space andl, = X'. Leth : t — «; be a homomorphism of a
locally compact groug> into the group of invertible isometries 0% such that — o, (z), = € X,
is norm continuous. Thefis an integrable representation 6f on X.

Proof. See the appendix of [Ped79]. O

Definition. Let G' be a locally compact abelian group andlletienote its dual group. Denote the
unitinI' by 6. Fort € G andr € I' let (¢, ) denote the value af at¢ and writefi(t) = [ (¢, 7)du(t)
for eachy € M(G), i.e. the inverse Fourier transform.

Let K'(G) be the dense ideal df' (G')dg consisting of functions such thﬁihas compact support
inT". Let X and X, be as introduced previously and tebe an integrable representation(obn X.
For each opef2 C I' we define the spectr&t-subspace

R*(Q) = o(X, X.) — closure in X of the linear subspac{af(:c) Lz e X, feKNG),suppf C Q} :
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For each closed C I the spectral\/-subspace is
M%(A) = annihilator of R*'(T'|A).
In other words,
z € M*(A) = (2,a5(€)) =0 V¢ e X,, f € KY(G) with suppf C TA.
6.10. Theorem.Let R* and M“ be as above. Then

If Q C Qo thenR*(Q2;) C R*().

If Ay C Ay thenM(Qy) C M(92).

Theo-closure of)y . R*(€2;) is equal toR*(U;€;).

MM (A;) = M*(NAy).

If @ C AthenR*(Q2) C M(A).

If A C QthenM*(A) C R*(Q).

If A =N Qy = NiQ, thenM(A) = N R(;).

If Q = U;A; = UjintA, thenR*(Q) = o-closure) |, M*(A;).

© © N o 00 B~ W NP

R*(@) = M*(@) ={0}; R*(I") = M*(T") = X.
Proof. See [Ped79]. O

Definition. From the fourth point above, there exists a smallest closell set’ such that\/*(A) =
X. We callA the Arveson spectrum ef and denote iSpec ().

6.11. Theorem.Leta be an integrable representation @fon X. For eachos € T, T.FA.E.

1. 0 € Spec (a).
2. R*(Q2) # 0 for every nbhd(2 of .

3. There exists a ndtz; } in the unit sphere oK such thafl|ay(z;) — (¢, 7)z;|| — 0 uniformly on
compact subsets ¢f.

4. Foreveryu € M(G) we have | < [[a,]|.

~

5. Foreveryf € L' (G) dg we have f(o)| < |lay]|.

~

6. If f € L' (G)dg anday = 0 thenf(o) = 0.

Proof.
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1—-2 If R*(Q2) = 0, thenSpec (o) C I'\Q2. Conversely ifo & Spec («) then there exists an open
nbhd.(2 of o with Spec (o) N Q2 = @. ThereforeR*(Q2) = 0.

2—>3 This follows from the following technical lemma which we do not prove: &at I', ¢ > 0,
andK a compact subset 61, there exists a compact nbhtl of o such that| o (x) — (¢, 0)z|| <
ellz]| Vt € K,z € M*(A).

3=—4 Giveny ande > 0 there is a compadk C G such thatu(G\K)| < e. Assumer; € X and
|l (x;) — (t,0)z4|| < eforallt € K; then

[i(o)] = lli(o)]

v
/(ozt(xz) (o)) dp(t H H/Oztxld/z H

< el u(E)] + 2|p(G\K) + [eu () |
< ellpll + 2 + el

<

Thereforeri(o) < ||ay|l-
4—5 Obvious.

5—>6 Obvious.

~ -~

6=—2 Let Q be a nbhd. ofr. There existsf € K'(G) with supp(f) C Q, f(s) = 1. Then by
assumptiony(x) # 0 for somez € X, and soR*({2) # 0.

O

6.12. Theorem. Let« be an integrable representation 6fon X. If A is the commutative Banach
algebra inB(X) generated byy;, f € L' (G) dg, then the Arveson spectrum®is homeomorphic
to the Gelfand spectrum of.

Proof. The dual of the homomorphism : L! (G)dg — A defines a continuous injectiam, :
A — T sincel is the spectrum of.! (G)dg. A is locally compact se, is a homeomorphism onto
its image. From the previous proposition thek a.(A) if and only if o € Spec («). O

6.13. Theorem (Compact Arveson Spectrum)Let o be an integrable representation 6fon X.
Then T.FA.E.

1. Spec («) is compact.
2. «ais uniformly continuous, i.6|1 — «|| — 0 ast — 0.

Proof.

1=—2 Let f € K*(G) with f = 1 on an open sef? containingSpec (a). Thena,(z) = =,V €
R*(€2), and sinceR* () = X, ay = 1. But then

11— a(@)|| <If =0 x flly lzll, Ve
— ||1 — «4|| — 0 ast — 0.
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2=—1 Let(f,) be an approximate identity fdr' (G)dg.

e — ar(o)]] < / lew(z) — ol f()dt
< / law — 1| fr(t)dt ||] .

Thereforen;, — 1 so the Banach algebra generatedfy,' (G) dg) contains the identity, and
S0Spec () is compact by the previous theorem.

O

6.14. Theorem (Stone).Lett — u; be a unitary representation of an abelian groGpon a Hilbert
spaceH. There exists a unique spectral measuren the Borel sets df, with values in3(H), such
that

up = /(t,r)du(T), vVt € g.

Proof. Let7(f) = [w.f(t)dt forany f € L' (G)dg. Thenr is a *-representation af' (G)dg into
B(H). Since eachr(f) is a normal operatdfr(f)| < Hﬂ‘ Thereforer extends by continuity to a

representation of thé™* algebraC(I"). Restrictingr to the projections in the Borel functions éh
we obtain a spectral measyren I" satisfying the required relation. O

Definition. LetZ be an ideal in th&™ algebraA. We say thaf is essential in4 if each non-zero
closed ideal of4 has a non-zero intersection with

Remark.Remember that the groups in this section are abeliaB.i$fa G-invariantC* algebra of
A, then we can consider the dynamical systéinG, «|z). ClearlySpec (a|g) C Spec («).

Definition. Let H*(.4) denote the set af-invariant, hereditary, non-ze(@*-subalgebras ofl. Let
Hg(A) denote the subset consisting of algetas H(.A) such that the closed ideal gfgenerated
by B is essential in4.

The Connes spectrum ofis

D(a) =) Spec(alz), Be H*(A).
The Borchers spectrum ofis

Ip(a) =(")Spec(als), Be Hy(A).
ObviouslyI'(«) C I'g(c).
Definition. If (M, G, «) is aW*-dynamical system then we define

T'(or) = () Spec (alpay) . p € {non-zeroG-invariant projection,

I'pla) = ﬂSpec (alpmp),  p € {non-zeroG-invariant projections witle(p) = 1}.
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6.15. Theorem (Connes Subgroup)Let (A, G, «) be an abelianC*-dynamical system. i, €
['(ar) and oy € Spec ((«), theno; + o4 € Spec («). MoreoverI'(«) is a closed subgroup df.

Proof. Let Q2 be a nbhd. ofr; + 0,. Then there are nbhds2; and {2, of o; and o, such that
Q; + Qy C Q. Now R*(£2,) is non-trivial by assumption; let, # 0 be fromR*(£2,). Let B denote
the hereditary”*-subalgebra ofA generated by the orb{tv; (z5z2) : t € G}. If x € B,z # 0, then
o (z3x0) # 0 for somet € G. Bis G-invariant so there is a non-zero element R°/5(€);). Thus
ai(x9)xy # 0 fro somet € G.

a(x2) € R*(Qs) =>au(x2)x1 € R*( + Qo) = R*(2) # 0. This holds for every? a nbhd. of
01+ 09, SO0 + 03 € Spec ().

Now, if o1, 05 € T'(«), by the above construction we knew+ o5 € Spec (ag) forall B € H*(A).
Therefores;, + 0o € I'(a). Sincel'(«) is the intersection of symmetric, closed sets, it is a closed
subgroup of". O

6.16. Theorem I subgroups ofl'g). Let (A, G,a) be an abelianC*-dynamical system. i <
['p(a) thenno € I'g(a),Vn € Z.

Proof. We will prove by induction that for any nbhdQ of o, anyB € Hg(A), and anyn € Z
there exist elements,, . .., x, in R*(Q2) N B such thate,z; - - -z, # 0. This is true forn = 1 since
o€ I'p(a).

Assume the induction step far Let {C,} be the maximal collection of algebrasiff(5) such that
the ideals generated by tfieare mutually orthogonal and such that for eatfere is an:; € R*(2)
such that; is the hereditary’*-algebra generated by the orlit;(zfx;) : t € G}. LetC = &C;.
EitherC;, € Hg(B) or we can find (by maximality) a close@:-invariant idealZ € 3, orthogonal to
the ideal generated by such thaC + Z € H&(B). In either caseZ = 0 or Z # 0, we must have
R*(Q2) NZ = 0. Otherwise we contradict maximality ¢€,; }.

C+7Z e Hi(B)andB € Hg(B), soC +Z € H*(B). By the induction hypothesis there exist
T, ..., 2, IN RY(Q)NCH+Z suchthay = zyxs - - - x, # 0. SinceR*(Q)NZ = 0, z, € R*(Q)NCVk.
Thusy € C. But thenay(x;)y # 0 for somet € G and some sinceC = @&C;. Sinceay(x;) €
R*(©2) N B we have established the claim for+ 1, and thus for alh € N.

Now assume: > 0, sincel's(«) is a symmetric set. Lé®,, be a nbhd. of.o, and choosé) a nbhd.
of o such that2 + --- + Q C Q,. GivenB € H%(B) we obtainz,, ..., z, in R*(Q2) N B such that
Yy =129 -2, # 0. Theny € R*(Q+---+Q)NB C R*(Q2,)NB, Vn. Thereforewo € Spec (a|B).
But B was arbitrary. O

6.2 KMS States

Remark.Now we will further specialize to the case = R. States will be characterized by the
behaviour of their correlation functions in the complex frequency plane. Roughly speaking, the
growth atlmw > 0 controls the growth fot < 0. This will introduce complex function techniques.

Definition. Let (A, G, «) be aC*-dynamical system. We say thdt € A is analytic fora if the
functiont — «a;(A) has an extension to an analytic functior- «.(A), ¢ € C.

6.17. Lemma. The set of analytic elements of @*-dynamical system foyd forms a dense *-
subalgebra ofd. The set of analytic elements od&*-dynamical system fat forms ac-weakly
dense *-subalgebra of1.
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Proof. Density follows from the approximation, for any € A,
A, = wl/in/Q/at(A)e"tht,

Ay — Aasn — oo, andA,, is analytic. Similarly for thé?* case. O

Definition. Given aC*-dynamical systemi4, R, o) we say that a state on A is a KMS state foy3,
B € (0,00), if forany A € Agpaiyic, B € A,

¢(Bacrip(A)) = d(ac(A)B), (€C.

¢ is called KMS fors = 0 if it is an a-invariant trace. (chaotic state)
¢ is called KMS forg = oo if |¢p(Ba¢(A))| < ||A]l ||B]| for Im ¢ > 0. (ground state)

6.18. Theorem. Let (A, R, a) be aC*-dynamical system. Fi¥ € (0,00]. Theng is a 5-KMS
state if and only if for everyd, B € A there exists a bounded continuous functjon 23 — C,
Qs ={CeC:0<Im¢ < g}, such thatf is holomorphic orint(§23) and one of the following is
true.

o If 3 < o0 f(t) = ¢(Baw(A)), f(t+1i0) = plau(A)B).

o If 3 =00 f(t) = ¢(Bay(A)), L € R, [[f] <[] ][y]-

Proof. Obviously the second part implies thais 3-KMS. Assumey is 3-KMS. Let {4, } be the
sequence of analytic elements convergingite .4 and letB € A. Definef,,(¢) = ¢(Ba¢(A)) for

[ < oo. Then the{ f,,} are analytic and, (¢ + i3) = ¢(ac(A)B).

Now eachf, is bounded o2, |f,.(¢)| < || Bl ||it(Ar)||. By the Phragmen-Lindéf theorem we
have

/a(€) = fm(Q)] < sup |[fn(2) = fm(2)]
< sup [O(Bay(An — Ap))| V [o(cw(An — Am)B)|

< ||B][|An = Al -

Therefore thg f,,} are uniformly convergent to a function bounded and continuous oand holo-
morphic onint(Qz). On the boundary (t) = ¢(Bay(A)), f(t +i8) = ¢(a(A)B),t € R.

If 5 = oo define f,,({) = ¢(Bay(A)) and the KMS condition ato gives |f,(¢) — f(¢)] <

|A, — Al || Bl for Im ¢ > 0 and again the,, converge to arf with the required properties. [J

6.19. Theorem.Let (A, R, o) be aC*-dynamical system and létbe a3-KMS state ond. Theng
IS a-invariant.

Proof. We havep(acyig(A)) = ¢(ac(A)) for 5> 0. Thusf : ¢ — ¢(ac(A)) is bounded orf2s
(previous result) and periodic with peried. Thereforef is a constant. Since the analytic elements
are dense itd, ¢ is a-invariant by continuity.

If 5 =0 thea-invariance is by definition.

If 5 = oo we havef : ( — ¢(ac(A)) is such thatf(¢)| < ||A|| whenIm ¢ > 0. Now ¢ = ¢*, so
d(ac(A))" = p(ae-(A*)), so forlm ¢ < 0 we have|f(()| < ¢(ac<(A*))* < ||A]l. Thereforef is
bounded, thereforé is a constant and is a-invariant. |
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6.20. Theorem (Ground States and Hamiltonians)Let (A, R, «) be aC*-dynamical system and
let ¢ be a state omd. Then T.FA.E.

1. ¢ is a KMS state witl = oo (ground state).

2. There exists a positive operatoon 4, not necessarily bounded, witl§, = 0, andexp(ith)m,(A) exp(
me(au(A)),Vt e R, A € A

3. ¢ is a-invariant, and if(r4, u?, Hy,, £s) is the cyclic covariant representation associated with
¢ thenSpec (u¢) CR,.

Proof.

2—1 Sinceh > 0, forany A, B € A we can define a functiori on the upper half plan€)..,
holomorphic and continuous on the boundary,

f(Q) = (exp(iCh)&a, EB) -

Clearly |f| < ||A]| ||B]]. Also, f(t) = ¢(B*ay(A)) for all t € R, so ¢ satisfies the KMS
condition with3 = oc.

1—>3 We know that we can write;, = exp(ith) for some self-adjoinf. If A is analytic then
€4 is analytic forexp(ith) so f : ( +— (exp(iCh)€a,€a) is analytic; f(() = ¢(A*ac(A)).
By assumptionf(¢) < ||A|]” if Im¢ > 0 then((exp(—h))*€4,€4) < ||A|* for anys > 0.
Thereforeexp(—h) < 1, and soh > 0 andSpec (u?) C R.

3—2 A computation shows that with{ = exp™", ¢, is in the domain of, andh&, = 0.

O

Remark. The above theorem says something which can be readily accepted by anyone familiar with
renormalization, but only after some realignment of religious ideas. It says that the Hamiltonian
generating the time evolution depends on the state chosen, and that it does not really exist indepen-
dently. As an example, consider a spin system. In the ordered phase the Hamiltonian contains an
interaction with an external field. However, in the disordered phase this interaction is irrelevant (in
the technical sense), and the construction corresponding to the above theorem would show this. The
“renormalization physics” is in some way already contained inside the algebraic approach.

Definition. Let (A, R, a) be aC*-dynamical system. We say thatis approximately inner if there
isanet{h,} C A, h, self-adjoint, such that

lim [l (A) — exp(iChy) A exp(~ichy)| = 0

uniformly on compact subsets @f

6.21. Theorem.Let (A, R, o) be aC*-dynamical system and assumés approximately inner and
1 € A. ThenA has a ground state (KMS state with= o).
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Proof. Let {h,} be the net in the definition of approximately inner. et = Ad (exp(ith,)).
Without loss, by adding a multiple of 1 if necessary,> 0 and0 € Spec (h,) for all \.

Now there is a net of statgg), } such thatp,(h,) = 0 for each\. Since the state space is compact
we can assumée, } is weak-* convergent to some. |¢x(Bag(A))| < [|A[ || B]], if Im¢ > 0.
Thereforep, is a ground state far*, applying theorem 6.18.

Moreover,
|[0(Bag(A))] < (¢ — o) (Bag(A))| + | Bl lac(A) — a2 (A)|| + 1]l || B
< JJA|[||B]] inthe limit of \.
Thereforey is a ground state faf. O

Remark.KMS states are physically interesting because the KMS condition can be substituted for
the Gibbs ansatz, and it makes sense immediately in infinite volume, without requiring a limiting
process. To see the equivalence for finite systems4 le¢ a finite-dimensional matrix algebra with

a canonical trac@r (-). Consider the state

¢(A) =Tr (pA) /Tx (p) .

The automorphism group is;(A) = e Ae~", By elementary calculation satisfies the KMS
condition for some3, if and only if p = exp(—fh).

6.3 Modular Group

Remark.It is a remarkable fact that von Neumann algebras carry hidden within themselves a kind of
“dynamical” information, in the form of aiR-action. How this arises is the subject of the following.
This will lead to the classification of typE/ [ factors.

Definition. Let M be a von Neumann algebra on a separable Hilbert spaceet 7' be a closed
operator or#{. 7' is said to be affiliated toV if

ADom(T) C Dom(T), TAD AT, VAe M".
6.22. Lemma. LetT = U|T| be the polar decomposition @f. Then T.F.A.E.

1. U and the spectral projections(-) belong toM.
2. T is affiliated toM.
Proof. O

Definition. Let M be a von Neumann algebra on a separable Hilbert spatet Q) € H be cyclic
and separating faM. Define two anti-linear operators), Fy by

S,AQ = A*Q, Ae M,
FyBQ = B*Q, Bec M-
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Sp andFy are closable. Denote their closureshgnd F respectively.S is called the Tomita operator
for (M, Q). Furthermore we have
So=F Fy =25,
St=g5, Fl=F

See Ref. [BW92, p. 32].

Definition. Let S = JAY? be the polar decomposition of the Tomita operator. The anti-unitary
operator./ is called the modular conjugation and the non-negative opefaiercalled the modular
operator.

6.23. Lemma.
1. A=FS
2. A= SF
3. F=JA/?
4. J=J*
5. J2=1
6. AV2 = JAY2]

Proof.

o A=S*S=FS.(FS) ' =S8 'F1=8F=A"

o S =S5"1= A2 = J*JA~Y2J*. Therefore, by uniqueness of the polar decomposition,
J=J andJA Y2 = JATY2 ] = AY2,

o Jr=J=— J?=1.

Definition. The strongly continuous unitary group defined by
A" = exp(itln A).
is called the modular group.

Example.Let H = L*([0,1])dz and let.M be the algebra of functions bounded a.e. [@n]
with pointwise multiplication.M acts onH as a commutative algebra of multiplication operators.
Q(x) = lis a cyclic and separating vector f&1. Then the Tomita operator is complex conjugation,
SAQ = A*Q), andA = 1.
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Example.Let H and K be Hilbert spaces of dimension Let{fi,...,f.} and{g1,...,9,} be
orthonormal bases fdk and KC respectively. LetM = B(H) ® Cly, acting on the total space
H ® K. Define the unit vectof? € H ® K by

Q:Z(ijj@gj, Gj>0, Z|G,j’2:1.
J

j=1

Note that(2 is not an arbitrary unit vector it{ ® /C, but is diagonal in the obvious basf3.is cyclic
and separating faM. The action oiM on’H ® K is generated by the following operators which
shuffle basis elements in the first factor,

Aj,s : fp X g — j,pfs X gr.
The Tomita operator is given by
SAj,sQ - A;‘,SQ — As,jQ = asfj X gs = S(ajfs X gj)v

and so

S(fs ®95) = (£ @ 9.).

J

From this we have

A(fs ® g5) = (Z—)2 (fs ® g5),

J

J(fs @ g5) = (f; ® gs)-

Then the spectrum ak is

Spec (A) = Spec (A1) = O (%y.

a.
s,j=1 J

Example.Let M(G) be the group von Neumann algebra for a locally compact géaupis a result
that there is ar-normal ando-finite weight¢. on M(G) such thatp.(z*z) < oo if and only if
there is a left bounded elemefite L (G)dg with A(f) = =, and in this case.(z*z) = | f]|3.
Furthermore the representation associateg,. tis spatially equivalent to the regular representation.
See Ref. [Ped79, p. 236]. Now the unitary group associated imgiven by

(u)(s) = A"¢(s), €€ L*(G)dg, teR,

whereA is the modular function of the group, which links left and right Haar measures.

Remark. The following is the fundamental result of Tomita-Takesaki theory. The most self-contained
proof is probably in [BR87, p. 94], which is what we follow. One lemma is required. A slightly dif-
ferent formalism is used in [Ped79, p. 377]. Ref. [BW92, p. 387] gives a proof in the approximately
finite dimensional (AF) case, and seems to follow [BR87] in exposition.
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6.24. Lemma. LetA € C, -\ € R,.. Let B € M°. Then there exists an elemetif € M such that
A3Q = (A+A1)7'BQ.

Furthermore we have
JBJ = ATY2A, AV £ NAYVZANTY2,
as a relation between bilinear forms @vm(A/2) N Dom(A~Y/2),
Proof. See Ref. [BR87, p. 91-94]. |

6.25. Theorem (Tomita-Takesaki).Let M be a von Neumann algebra with a cyclic and separating
vector(). LetA,J be the associated modular operator and modular conjugation. Then

JMJ = M-,
A*MA™t = M, VieR.

Proof. Given\ > 0 andB € B(H), define a quadratic form
o it , ‘
I(B) = \71/? /OO dt mA”BA‘”.
If ¢, € Dom(A'?) N Dom(A~1/2), define the function
FO) = (A720 (B)AY29) + A (A2, I\ (B)AT!29)

- / Tt AV (AT, BALAG) 4 A2 (A3, BACUAG)]

Tt —mt
w €™+te

Let A = [ dEA(p)p be a spectral decomposition far. Then we have

[ it ) p\"? A\ dt pA\"

— [ @B, BEs())
= (¢, B9).
Therefore, as equality of bilinear forms @wm(A!/?) N Dom(A~'/?) we have
B = A2 (B)AY? + AAY2 L (B)ATYA,
From the lemma we have the existencedofe M* with
JALT = ATVPAAYE L XAYZA N,
Then the above expression gives an inverse relation

Ay = L(JAL).
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If B € M¢°then, sinced, € M,

(v, [B', I\(JA1J)] ¢) =0,
/OO dt e (v, [B', A" JAJAT?] ) =0, VpeR.

e7rt + e—7rt

—00

Therefore
AL TJTA JATH € M = M.

Settingt = 0 givesJM°J C M. The symmetries of the conjugation then g1/ C M¢. Using
J? = 1 gives the first result. Finally, sincéM¢J C M, anyA € M has the formAd = JA,J for
someA; € M¢. SinceA®JA, JA~" ¢ M, we then have\? AA~% ¢ M, which proves the second
claim. B

Remark.The formal calculation here is that the Fourier transform provides an inverse for the map
Aw— JAJ € Mc. The proof justifies this statement.

6.26. Theorem (Exterior Equivalence).Let ¢ and« be faithful normal states on a von Neumann
algebraM. Letaﬁg andaﬁ be the associated modular groups. Then there exists a strongly continuous
one-parameter family of unitary operatosigin M such that

1. o/ (z) = wol (z)uf, z € M, t € R.
2. Upys = utaf(us), s,t € R.

Proof. Consider the von Neumann algebyé @ Mat, (C). Define a faithful normal state by

p((522)) = (ot + vam)).

Let of, denote the modular group We haw§z ® e11) = a:(z) ® e11 ando? (y @ es2) = Gi(y) & ean

for x,y € M, wherea; andj, satisfy the KMS condition for the stateésand. By the KMS

uniqueness result then = ¢ andj, = o!. Define

W, =o? <(1) 8) _ (at Zz) € M ® Maty (C).

Uy

of(1)=0f(1)=1,s0

. 00 . (10
WtWt:(O 1)’ WtWt:(o 0)'

Thereforea; = b, = ¢; = 0 andu; € M is unitary. Furthermore

(it 8) =t (0 0) =2 [G0) (5 )

Thereforeu;, ; = uso?(u;). Furthermore

b o) = 10D @ 0) 6 o))

soo! (x) = wo?ul. Thereforey, is the desired unitary family. O
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Definition. A unitary family u; satisfying the second condition of the above theorem is called a
unitary cocycle. Two automorphism groups connected by a unitary cocycle as above are called
exterior equivalent.

6.4 Typelll Factors

Remark.Let M be ao-finite von Neumann algebra. Theml admits a faithful normal state,

with associated modular grouxg. By the exterior equivalence theorem, any other modular group
associated with a faithful normal state an will produce an exterior-equivalent dynamical system.
Therefore the Connes spectriitv?) is independent of. So we can denote it by(M). Itis an
algebraic invariant foM.

Remark. The following theorem shows that the Connes spectrum is not sensitive to factors other than
typelIl.
6.27. Theorem. If M is semifinite thed'(M) = {0}.

Remark.By a previous resulf'(M) is a closed subgroup @. There are three cases.

1. T(M) = {o}.
2. (M) = {nlog X : n € Z}, with A € (0,1).
3. ’'(M)=R.

As a matter of notation, call the first case= 0 and the last case = 1, since the subgroups of the
second case increase in size\as> 1. Therefore we have assigned a real number|0, 1] to every
factor of typelI1. We say thatM is of typeI1,. This is the classification obtfinite) type 11
factors.

Definition. Supposep is a normal state of a von Neumann algeldfra Since¢ is normal there is
a smallest projectiop € M such thatp(p) = 1. Theng is faithful onpMp. Denote the modular
operator associated 3, by A, and the modular group by?. Then define

S(M) = ()Spec (Ay),

where the intersection is over all normal state§ he following theorem shows that, like the Connes
spectrumS(-) is not sensitive to factors other than typgl.

6.28. Theorem.Let M be a von Neumann algebra. M is typelII then0 € S(M). Otherwise
S(M) ={1}.

Proof. If 0 ¢ S(M) then there is some normal statenith associated projectiop such that) ¢
Spec (Ay). SinceA™ = FA.J, we haveSpec (A4) = Spec (A,1). Sinced ¢ Spec (Ay), Ay must

be bounded. Thenﬁ‘g is clearly uniformly continuous opMp; thereforeaﬂ‘g is inner. SopMp is
semifinite. Since # 0, M is not typel 1.

Conversely suppos#1 is not typel/I1. Then it contains a nonzero finite projectipnand without
lossp is the support of some normal tracial stateThenA, = 1, and saS(M) = {1}. O
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Remark.The following lemma and theorem show that there is an explicit relation between the
Connes spectrum arff{ -), again for thes-finite case.

6.29. Lemma. Let &, be a cyclic and separating vector for a von Neumann algebtalLet A be
the modular operator andy be the modular group associated wigh Then for any € R we have
s € Spec (o) if and only ife® € Spec (A).

Proof. Let f € L' (R) dz andx € M. Then

~

Fllog Aty = / dt (t) exp(it log(A))a&,

= / dt f(t) A"z

- [t 5oty

= 0(z)&-
Therefores;(x) = 0 for all z € M if and only if f(log A) = 0. Buts € Spec (o) if and only if
op £ 0forall f € L' (R) dx satisfyingf(log(e*)) = f(s) # 0. O

6.30. Theorem. Let M be ac-finite von Neumann algebra and letc R. Thens € I'(M) if and
only ife® € S(M).
Proof. Let ¢ be a normal state aM with support projectiorp, modular groupyﬂﬁ, and modular
operatorA,. Choosey a faithful normal state ol — p)M (1 — p) and consider the faithful state
p= %(qb + 1) on M. From the uniqueness of the modular groupavp we have
of(x) = of(z), € pMp.

pis fixed byo%, so

D(M) =T(0") € T(0”]pmp) = T(0?).
Supposes € I'(M). Then by the lemma® € Spec (A,). But ¢ was arbitrary se® € S(M).

Conversely, letp be a faithful normal state oM with modular groups?. For each nonzero
projectionp which is fixed byo]fg we have that?|,,, is the modular group associated with the
faithful normal statep(-)/¢(p) on pMp. So if s € S(M) then it follows from the lemma that
s € Spec (0?|,r1p)- Sincep was arbitrarys € I'(6?) = ['(M). O
6.31. Theorem (Typel I1 Glimm Algebras). Let F be the fermion algebra. Let, be a permuta-
tion invariant product state on the fermion algebra, as in the theorem on the existence éf fype
Glimm algebras\ € (0,1/2). Then the factotM, arising from ¢, is of typelII,, where\' =
A1 =)L

Proof. See Ref. [Ped79, p. 392]. |

6.5 Hyperfiniteness Again

6.32. Theorem (Murray-von Neumann). Up to algebraic isomorphism, there exists a unique hy-
perfinite ; factor.

6.33. Theorem (Connes)LetG be amenable. ThenM (G) is hyperfinite.



Chapter 7

Extensions

Definition. Let A, B, £ beC* algebra s. Then a short exact sequence
0—-B—-&—-A—0
is called an extension o4 by B. As such /3 is isomorphic to an ideal iff, and€ /B = A.

Remark. The natural goal at this point is to introduce a notion of equivalence for extensions and then
classify extensions ofl by 5.

Example.Let A = C andB = Cy(0, 1). Then there are four extensions.dfy B;

51 — (C D 00(0, ].)

62 - 00(0, 1]
&y = Cyl0,1)
£, =C(SY)

Definition. Define Busby invariant ...

Definition. DefineExt(A, B) ...

49



Chapter 8

K-Theory

8.1 Introduction

This chapter at best provides a few hints as to the nature of the subject. For treatments of the topics
here, see Refs. [Bro96, Lod92, W0O93, Bla86, Cun].

8.2 Commutative K-Theory

Remark.Recall that a commutative Banach algebra is aw@yx’) for some compact Hausdorff
spaceX, see theorem 1.8. This result for functions can be fruitfully generalized to include sec-
tions of vector bundles. Commutativé-theory is also called topologic&l -theory because of this
connection. We will shortly see what topology it describes.

Definition. The Whitney sum of two topological vector bundles £ — X, ¢ : I — X is the
vector bundle

EoF={(ef)e ExF:ple)=q(f)}.

The set of isomorphism classes of complex vector bundles over a $p&ea commutative semi-
group with identity, with the operation given by Whitney sum. Denote this semigroug:-b¥ ).
Similarly defineVg (X).

8.1. Theorem (Swan).Let F be a vector bundle over a compact Hausdorff spAcerhen there is
a bundleF over X such thatt ¢ F'is trivial.

Proof. See [Hus74]. O

Definition. A free module of rank is a module which has a basis, and for which any two such basis
sets have the same cardinality, When the module is actually a vector space over a division ring,
the rank is usually called the dimension. See [Hun74].

Definition. A direct summand of a free module is called a projective module. Specifically, the
module P is projective if and only if there exists a free modleand a modulgs such thatt’ =
K @ P. See [Hun74].

50
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Remark.Every free module over a ring with identity is projective. See [Hun74].

Example.Z, andZ; are both modules ovefs. However, neither of these is free, since neither
posesses a nonempty basis. To see this explicitly, note that the equatibn= 0 can be satisfied

for nonzeror € Zg, so that one cannot find any appropriate linearly independent sets with which to
build a basis. However, both, andZs are projective modules ové&i; becausé is free as module
over itself and we have the module isomorphiBpsd Z3 = Zg. From [Hun74].

Remark.Let E be a vector bundle over a compact spaceletI" (E) be the set of sections df.
ThenT (E) is a module over the ring'(X). If E is trivial of dimensionn, thenI' (E) is a free
module of rankn. By Swan’s theoreni’ (E) is projective for anyE. By compactness ok and
finite-dimensionality of the fibers df, " (F) is finitely generated.

8.2. Theorem. M is a finitely generated projective module over a commutative Banach algébra
with unit, if and only ifM = I" (E) for some vector bundI& on a compact spac¥’.

Proof. One direction follows from the above easy remark. For the converse, asduisas stated.
SinceM is finitely generated, we know there is a modilesuch thatVl W = A", for somen. The
projection ontal/ in A™ is an element of the matrix algebid, (.4) and it is an idempotent. In this
way, each finitely-generated projective module is associated with an idempotefy{ i), unique
up to similarity. Since4 is a commutative Banach algebra with unit, iti$ X') for some compact
Hausdorff spaceX. We identify M,,(A) with C'(X, M,,). Letp be the idempotent associatedtb
above, s € C(X, M,,). DefineE = {(z,v) € X x C" : v € Ran(p,)}. O

Remark.Roughly speaking we can imagine a big "infinite-dimensional” bundle av&om which

all other bundles are obtained by cutting out sub-bundles using a continuous projection valued func-
tion on X, which projects onto a finite-dimensional subspace at each fiber. Think of a matrix with a
finite number of non-vanishing entries at each poinkof

Remark. The above characterization shows that.X) or Vx(X) are equivalent to the isomorphis-
m classes of finitely-generated projective modules avefX) or Cr(X), or equivalently to the
equivalence classes of idempotentsifg,(C'(X)). Denote the latter by (C'(X)).

Definition. Let H be an abelian semigroup with identity. Define the Grothendieck groufd,of
Groth(H), to be the quotient off x H by the equivalence relatia, y,) ~ (x2,y9) iff there is a
ZWith x1 + 4o + 2 = 9 + 41 + 2.

Remark.As the prototype examplé&roth(N) = Z.

Definition. Let X be a compact Hausdorff space. Defiig(X) = Groth(V¢(X)) and K3(X) =
Groth(Ve(X)). K2 and K are contravariant functors from compact Hausdorff spaces to abelian
groups.

Example.Let X = [0, 1] or X = {x}. ThenK2(X) = K2(X) 2 Z.

Example. K3(S') X Z x Zs.

Example. K2(S') 2 Z x Z.

Remark. The definition of thek® groups for non-compact spaces is more involved. This is because
the definition must behave well for relative spaces, which are required for the development of the
long exact sequence.



CHAPTER 8. K-THEORY 52

Definition. Let X be a locally compact Hausdorff space. Létbe a closed subspace &f. Let

E and F' be vector bundles oveX which are isomorphic when restricted¥q by an isomorphism

a. Identify two such triples £, F, ) and (E', F', /) if E = E', F = F’, by isomorphisms which
intertwine o and o/ when restricted td”. The set of such triples so identifiedforms an abelian
semigroupy/(X,Y). Define the relativex group K°(X,Y) = Groth(V(X,Y)).

Definition. Let X be a locally compact Hausdorff space. Define hgroup
K(X)= KX, +),
whereX " is the one-point compactification of.

8.3. Theorem. Let X be a locally compact Hausdorff space aridbe a closed subspace &f; let
U= X\Y. Letq : XT — U™ be the identity ori/ and sendX "\ U to the point at infinity. Then
K°(X,Y) = K°U), and the sequence

K (U) — K°(X) — K°(Y)
is exact in the middldm (¢*) = ker (i*).
Remark.It is not generically true that* is injective or that* is surjective.
Definition. K"(X) = K°(X x R") forn > 0.
8.4. Theorem. Let X, Y, U be as above. Then the following long sequence is exact.
= KTU) - KT(X) = K™(Y) = K" U) — - — K°(Y).
Proof. OJ

8.5. Theorem (Chern Character). Let X be a compact Hausdorff space. I8t (X; Q) be then-th
Alexander or Cech cohomology groupf Then
Kp ®Q = @ evenH" (X;Q)
K(El ®Q = @noddHn (XvQ)

Proof. O

Remark.The above definitions provide contravariant functérs™. By reformulating in terms of
modules over’ (X ), we can obtain covariant functors from commutative Banach algebras to abelian
groups. It is these functors which will be extended to the noncommutative case.

Definition. Let.4 be a commutative Banach algebra with unit. /gt4) be the isomorphism classes
of finitely-generated projectivel modules. Defing<y(.A) = Groth(V(A)).

Remark.Note thatK,(C(X)) & K2(X), andKy(Cr(X)) = KR (X).

Definition. If A does not have a unit, defif€,(A) = ker (h) C Ky(A"), whereh is the group
homomorphisnt : Ko(A") — Ko(Z) = Z, and A" is A with unit attached.
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Remark.Attaching a unit is the analog of the one-point compactification process in the previously
described classical theory.

Definition. Let. A be a commutative Banach algebra. Define the suspensidri@be the algebra
SA= {f:R—>A : lim || f(2) :o}.
Note thatS.A is also a commutative Banach algebra.

Definition. Let.A be a commutative Banach algebra. Defing A) = Ky(S"A).

8.3 Kj,-Theory

Definition. Let.4 be a Banach algebra. Th&moj(.A) is the set of algebraic equivalence classes of
idempotents ind. Algebraic equivalence is defined py~ ¢ <—=3x,y € Awith xy = p, yx = q.

Remark.If A is aC* algebra therProj(.A) can be defined as the set of equivalence classes of
projections with equivalence defined by similarity.

Definition. Let V' (A) denoteProj(Mat., (A)). ThenV () is a covariant functor from Banach alge-
bras to commutative semigroups with identity.

Remark.One can equivalently defiré(.4) as the set of isomorphism classes of finitely-generated
projectiveA-modules, as in the commutative case.

Example.V(C) = V(Mat, (C)) = V(K(H)) 2 N U {0}.

Example.V(B(H)) 2 NU {0} U {co}.

Example.Let M be a typel [;. ThenV (M) = (0, oc.

Example.Let M be a typel I,. ThenV (M) = [0, o<].

Example.Let X be a compact Hausdorff space. THé(' (X)) = Vi (X).

Example.Let X be a connected, locally compact, noncompact Hausdorff space.VTllign X)) =

{0}

Example.Fixz,y € C. Let A= {f : [0,1] — Mat, (C) : f(0) = diag(z,0), f(1) = diag(y,v)}.
ThenA™ = {f:]0,1] — Maty (C) : f(0) = diag(z, 2), f(1) = diag(y,y),z € C}. A contains
no nonzero projections, bttat, (A) contains nontrivial projections. We havg.A) = N U {0},
andV(A") = {(m,n) € ZxZ : m,n > 0,m + neven}. This shows why we must consider the
matrix algebras of4 as well asA itself.

Remark.Note that any of the example semigroups which contéikg does not have cancellation.
This can happen generically. Semigroups without cancellation are apparently somewhat difficult to
handle.

Definition. Letr : AT — A™\ A be the canonical projection for the unitarizationifr is trivial
if A has a unit. We defin&y(A) = ker (7), C Groth(V(A™1)).

Remark.As in the commutative casewe do not defifig(.4) directly as the given Grothendieck
group, but as a subgroup. This is becaugel ') is somehow too big; it does not include appropriate
“constraints at infinity”. And equally perplexingly;(.A) is somehow too small.



CHAPTER 8. K-THEORY 54
Example.C, (R?) does not have a unit.

e Groth(V(Cy (R)™1)) = 72,

e Groth(V(Cy (R?))) = {0}.

o Ko(Cy(R?)) 2Z,

Definition. An ordered group is a paiG, G.) whereG is an Abelian group and:, is a distin-
guished sub-semigroup containing the identity and having the properties

e Gi+(-Gy) =G
. G N (~G.)={0}
G, is called the positive cone @f.
Remark. A positove cone as defined above provides a partial ordétony < r <= = —y € G,.

Definition. A scaled ordered group is an ordered grdGp G ) together with a distinguished ele-
mentu € G, with the property

Vere G,3dn >0 with =z <nu.

u is called an order unit.

Definition. An ordered gruodG, GG ) is called unperforated ihz > 0 for somen > 0 implies
xz > 0.

Remark.An unperforated ordered group is torsion free.

Definition. A Banach algebrad is called finite if for idempotentg, ¢ with p < ¢ andp ~ ¢, we
havep = gq.

Remark.If A has a unit, finiteness as defined above is equivalent to the property that no proper
idempotent hag ~ 1.

Remark.A C* algebra with unit is finite if and only if every isometry is unitary.
Definition. A Banach algebr&d is called stably finite ifMat,, (.A) is finite for alln.

8.6. Theorem. Let A be a stably finite Banach algebra with unit. Th&p(.4) is an ordered group
with positive coné{y(A); = Im (V(A)) C Ky(A).

Proof. See [Bla86]. O
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8.4 K -Theory

Definition. Let A be a Banach algebra. LétL. (A), be the identity component i6/L..(A).

8.7. Lemma. Let.4 be aC* algebra. Thenk(A) = Uy (A)/Us(A)p.

Proof. By polar decompositiori/,,(A) is a deformation retract @¥ L. (.A). S0U,(A)/Us(A)g
GLoo(A)/G Lo (Ao-
Example. K, (C) = {0}.

Example.Let M be a von Neumann algebra. Then by spectral théagy,M) is connected. There-
fore K (()M) = {0}.

Example.Let A = C(S'). ThenU,(A)/U,(A), = Z, which is the winding number around the
circle. Furthermorel; (A) = Z.

(%

Definition. Let.A be a Banach algebra. Define the suspensias,of
SA={f:R— A lim ||f(z)] =0}.
S.A is a Banach algebra with pointwise multiplication and the sup norm.
8.8. Lemma. Let.A be aC* algebra. Ther8. A is aC* algebra, andS A = Cy(R) ® A.
Proof. ? O
8.9. Theorem. Let.A be a Banach algebra. Thef, (A) = K((S.A).

Proof. This is dificult. See [Bla86, p. 68]. O

8.10. Theorem. The sequence
Ki(J) = Ki(A) = Ki(A)J) =% Ko(T) — Ko(A) — Ko(A/T)
is exact.

Proof. See [Bla86, p. 70]. O

Remark.The mapo is called the index map. It is related to the Fredholm index of unitary elements
of the Calkin algebra. See [Bla86, p. 71].

8.11. Theorem. K;(A) = K;(A").

Proof. See [Bla86, p. 72]. O
8.12. Theorem (Bott Periodicity). Let.A be a Banach algebra. Theii, (S.A) = Ky(A).

Proof. See [Bla86, p. 72]. O
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8.5 AF Algebras

Definition. Let .4 be an inductive limit of a sequence of finite-dimensiofhéalalgebras. Thet is
aC* algebra. Any sucld™* algebra is called an AF algebra. AF stands for approximately finite.

Example. The algebra of compact operators on a Hilbert space is an AF algebra.

Example. The canonical anti-commutation algebra (CAR) is an AF algebra. Recall the discussion
of the fermion algebra, which was a special case of Glimm algebra.

Remark.WhenA is an AF algebra, we know thaf,(.A) is some inductive limitim_, Z", although

we do not a-priori know the inclusions, so we do not know which inductive limit it is. Knowledge of
Ky (.A) is made critical by the following characterization of AF algebras. For AF algelyds,(.A)

is called the dimension group.

8.13. Theorem. Let A, B be AF algebras. Suppogé,(A) = Ky(B) as an isomorphism of scaled
ordered groups. Thed = B.

Proof. See [Bla86, p. 55]. O

Definition. Let G be an ordered groug’ is said to have the Riesz interpolation property if given
1,22, Y1, Y2 € G, With x1, 25 < 41,50 thereis a € G with xq, 25 < z < yq, 1.

8.14. Theorem. An ordered group is a dimension group if and only if it is countable, unperforated,
and it has the Riesz interpolation property.

Proof. See [Eff81]. |

Example.Let G be a countable dense subgrougRofThend is a dimension group.

Example. The Glimm algebras correspond to the dense subgroufscohtainingZ. These groups
are classified by generalized integers- 223™s5™s ... pii . . . which entered the Glimm algebra
construction directly. The subgroups@fcorresponding to the generalized integés the group of
rationals that dividg, denotedZ,. The groupZ~) corresponds to the CAR algebra.

Example.Let A, = C(S') X,, Z be the crossed product where is the shift on the circle by

t € (0,1), andt ¢ Q. ThenKy(A;) = Z x Z, and K1(A;) = Z x Z. In fact, we can write
Ko(Ay) = Z + tZ. If u,v are any two unitary elements of@& algebra satisfyingiv = e*™vu,
thenu,v generate & algebra isomorphic to4,. A, is sometimes called the (one-dimensional)
noncommutative torus. Note that physically this is the algebra of magnetic translation operators for
electrons moving in a constant magnetic field.

8.6 Equivariant K-Theory

Remark.Let (A, G, «) be aC* dynamical system. Recall the definition of the crossed product
G x,A. The crossed product provides, roughly speaking, a way to emdbetb a largerC* algebra
in which the automorphisms of become inner.

8.15. Theorem (Connes Thom Isomorphism)Leta : R — Aut (A) be a continuous homomor-
phism, with4 a C* algebra. Then

KZ(.A XQR) gKlfi(.A% ZZO,l
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Remark.This is a generalization of Bott periodicity, which is obtained with the case of the trivial
action. The surprising point is that the result is independent of the action.

Definition. Let (A, G, «) be aC* dynamical system witl; compact and4 unital. Let& be a
finitely-generated projectivel-module and let\ be a strongly continuous homomorphism frém
to the invertible elements iBB(€) satisfying\,(ea) = A\,(e)ay(a). Then&, X is called a finitely-
generated projective4, G, o)-module.

Definition. Let V¢(A) be the set of equivalence classes of finitely-generated projectivé, a)-
modules. Note that“(A) is a commutative semigroup under Whitney sum.

Definition. Let (A, G, «) be aC* dynamical system, wittd not necessarily unital. Let : AT —
C be the canonical projection of the unitization 4f so we haver, : Groth(V¢(A*)) —
Groth(V%(C)), where the action off onC is trivial. Define the abelian group

K§(A, a) = ker (7,) C Groth(VE(AY)).
Remark.If A is unital, then we hav&§' (A, o) = Groth(VE(A))
Remark. K§(C) = Rep(G), the representation ring 6.

8.16. Theorem. Let (A, G, o) be aC* dynamical system witty compact. Then
K§(A, 0) = Ky(A xq Q)
Proof. See [Bla86]. |

Definition. K%(A,a) = K§(S#4), where we recall tha8* = C, (R) ® A, and the action ofy on
Cy (R) is taken to be trivial.

8.17. Theorem (Equivariant Bott Periodicity). Let (A, G, «) be aC* dynamical system, witty
compact. Then there exists a natuRalp(G)-module isomorphism

Kg(A) = KT (SY).

8.7 Index Theorems

Remark.The Atiyah-Singer index theorem can be formulated in term& d@heory as follows. Let
D be an elliptic pseudo-differential operator on a compact maniiéldThe analytic index o) is
Ind(D) = dim ker (D) - dim coker (D). Recall that the topological index @# is defined in terms of
the symbob, as

Ind (D) = (n(ch(op)) U TA(T*M ®g C), [M]),

whereTd(T*M ®g C) € H* (M;Q) is the Todd class of the complexified cotangent bundie

andn : H*(T*M;Q) — H*(T*M;Q) is the inverse of the Thom isomorphism. As a map on
symbols,Ind’ defines a homomorphism frodd®(7T* M) to Z, since the symbol defines an element

of K°(T*M). The analytic index, on the other hand, is a composition of the mhags’(7*M) —

K°(M), sending the equivalence class of the symbol to the equivalence class of the operator, and
py : K°(M) — Z induced byp : M — x.
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Remark.Roughly speaking, the family index is the following. Lgb, : y € Y'} be a continuous
family of elliptic pseudo-differential operators on a compact manifold. Assuméfifé are invert-

ible except possibly for a compact subsetraf Now ker (D,) andcoker (D,) are vector spaces of
finite-dimension for eacly, and by the appropriate notion of continuity they determine two vector
bundles ovelr’. The analytic index of the family is the difference of the equivalence classes of these
bundles inK,(Y).



Chapter 9

Nuclear C* Algebras

Definition. A C* algebraA is called nuclear ifr(.A)“ is hyperfinite for any representatianof A.

9.1. Theorem. T.FA.E.

1. Ais a nuclearC* algebra.

2.id : A — A can be approximated pointwise in norm by completely positive finite-rank
contractions.

3. A°¢is hyperfinite.
Proof. O
9.2. Theorem. If Ais atypel C* algebra, then4 is nuclear.

9.3. Theorem. Inductive limits of type C* algebras are nuclear. In particular, AF algebras are
nuclear.

9.4. Theorem. Let A be a separable nuclear* algebra and3 be anyC* algebra. Therkxt(.A, B)
is a group.
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